Influence of Concentration of Graphene Oxide to Thermal Diffusivity in Nano-liquid Form Using Thermal Lens Method
Main Article Content
Abstract
This study examines the effect of graphene oxide (GO) concentration on thermal diffusivity in nano-liquid formulations using the thermal lens method. Nano-liquid samples with varied GO concentrations were prepared and analyzed. Results indicate an increase in thermal diffusivity with rising GO concentration up to a threshold, beyond which further increments yield diminishing returns. This behavior is attributed to the unique thermal transport mechanisms enabled by GO nanosheets. These findings offer insights for optimizing GO-based nano-liquids for thermal management applications. Moreover, the study underscores the efficacy of the thermal lens method for probing thermal properties in nanofluid systems.
Downloads
Download data is not yet available.
Article Details
How to Cite
MON, T., Sa’at, N. K., Azis, R., Mamat, M. S., & Ismail, N. Q. A. (2025). Influence of Concentration of Graphene Oxide to Thermal Diffusivity in Nano-liquid Form Using Thermal Lens Method. Indonesian Journal of Physics, 35(2), 26 - 30. https://doi.org/10.5614/itb.ijp.2024.35.2.4
Section
Articles
References
Bialkowski, S. E., & Mandelis, A. (1996). Photothermal Spectroscopy Methods for Chemical Analysis . Physics Today, 49(10), 76–76. https://doi.org/10.1063/1.2807813
Cai, Z., Tian, M., & Zhang, G. (2020). Experimental study on the flow and heat transfer of graphene-based lubricants in a horizontal tube. Processes, 8(12), 1–14. https://doi.org/10.3390/pr8121675
Chua, E. M., Shimeta, J., Nugegoda, D., Morrison, P. D., & Clarke, B. O. (2014). Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, allorchestes compressa. Environmental Science and Technology, 48(14), 8127–8134. https://doi.org/10.1021/es405717z
Gordon, J. P., Leite, R. C. C., Moore, R. S., Porto, S. P. S., & Whinnery, J. R. (1965). LongTransient Effects in Lasers with Inserted Liquid Samples. 3. https://doi.org/10.1063/1.1713919
Herrera-Aquino, R., Jiménez-Pérez, J. L., Altamirano-Juárez, D. C., López-Gamboa, G., Correa-Pacheco, Z. N., & Carbajal-Valdéz, R. (2019). Green Synthesis of Silver Nanoparticles Contained in Centrifuged Citrus Oil and Their Thermal Diffusivity Study by Using Thermal Lens Technique. International Journal of Thermophysics, 40(1). https://doi.org/10.1007/s10765-018-2466-0
Hwang, Y., Heo, Y., Yoo, Y., & Kim, J. (2014). The addition of functionalized graphene oxide to polyetherimide to improve its thermal conductivity and mechanical properties. Polymers for Advanced Technologies, 25(10), 1155–1162. https://doi.org/10.1002/pat.3369
Jiménez-Pérez, J. L., López-Gamboa, G., Sánchez-Ramírez, J. F., Correa-Pacheco, Z. N., Netzahual Lopantzi, A., & Cruz-Orea, A. (2021). Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique. International Journal of Thermophysics, 42(7). https://doi.org/10.1007/s10765-021-02861-6
John, J., Thomas, L., Kumar, B. R., Kurian, A., & George, S. D. (2015). Shape dependent heat transport through green synthesized gold nanofluids. Journal of Physics D: Applied Physics, 48(33). https://doi.org/10.1088/0022-3727/48/33/335301
Khabibullin, V. R., Usoltseva, L. O., Mikheev, I. v., & Proskurnin, M. A. (2023). Thermal Diffusivity of Aqueous Dispersions of Silicon Oxide Nanoparticles by Dual-Beam Thermal Lens Spectrometry. Nanomaterials, 13(6). https://doi.org/10.3390/nano13061006
Lenart, V. M., Astrath, N. G. C., Turchiello, R. F., Goya, G. F., & Gómez, S. L. (2018). Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. Journal of Applied Physics, 123(8). https://doi.org/10.1063/1.5017025
Liu, W. I., Malekahmadi, O., Amin, S., Ghashang, M., & Karimipour, A. (2019). A novel comprehensive experimental study concerned graphene oxide nanoparticles dispersed in water : Synthesise , characterisation , thermal conductivity measurement and present a new approach of RLSF neural network. International Communications in Heat and Mass Transfer, 109, 104333. https://doi.org/10.1016/j.icheatmasstransfer.2019.104333
Manikandan, S. P., & Baskar, R. (2021). Studies on thermophysical property variations of graphene nanoparticle suspended ethylene glycol/water. Chemical Industry and Chemical Engineering Quarterly, 27(2), 177–187. https://doi.org/10.2298/CICEQ200504036P
Noroozi, M., Zakaria, A., Radiman, S., & Wahab, Z. A. (2016). Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0152699
Novoselov, K. S., Geim, A. K., Morozov, S. v, Jiang, D., Zhang, Y., Dubonos, S. v, Grigorieva, I. v, & Firsov, A. A. (2000). Electric Field Effect in Atomically Thin Carbon Films. In Phys. Rev. Lett (Vol. 404). Kluwer. http://science.sciencemag.org/
Pech-May, N. W., Tabasco-Novelo, C., Quintana, P., Rodriguez-Gattorno, G., & Alvarado-Gil, J. J. (2023). Evidence of a Thermal Diffusivity Gap in Sintered Li-Co-Sb-O Solid Solutions. ACS Omega, 8(8), 7808–7815. https://doi.org/10.1021/acsomega.2c07557
Pratap, D., Eugenio, C., Singh, B., & Singh, S. (2018). Graphene oxide : An efficient material and recent approach for biotechnological and biomedical applications. January. https://doi.org/10.1016/j.msec.2018.01.004
Ramya, M., Nideep, T. K., Nampoori, V. P. N., & Kailasnath, M. (2019). Particle size and concentration effect on thermal diffusivity of water-based ZnO nanofluid using the dual-beam thermal lens technique. Applied Physics B: Lasers and Optics, 125(9). https://doi.org/10.1007/s00340-019-7294-9
Rodriguez, L. G., Iza, P., & Paz, J. L. (2016). Study of dependence between thermal diffusivity and sample concentration measured by means of frequency-resolved thermal lens experiment. 25(2), 1–9. https://doi.org/10.1142/S0218863516500223
Rutkowski, P., Klimczyk, P., Jaworska, L., Stobierski, L., & Dubiel, A. (2015). Thermal properties of pressure sintered alumina-graphene composites. Journal of Thermal Analysis and Calorimetry, 122(1), 105–114. https://doi.org/10.1007/s10973-015-4694-x
Shahriari, E., Moradi, M., & Raeisi, M. (2016). An experimental study of thermal diffusivity of Au nanoparticles : effects of concentration particle size. Journal of Theoretical and Applied Physics, 10(4), 259–263. https://doi.org/10.1007/s40094-016-0224-x
Shen, J., Soroka, A. J., Snook, R. D., Shen, J., Soroka, A. J., & Snookb, R. D. (1992). A model for cw laser induced modemismatched dualbeam thermal lens spectrometry based on probe beam profile image detection A model for cw laser induced mode-mismatched spectrometry based on probe beam profile image detection thermal lens. 700(1995). https://doi.org/10.1063/1.360329
Wilk, J., Smusz, R., Filip, R., Chmiel, G., & Bednarczyk, T. (2020). Experimental investigations on graphene oxide/rubber composite thermal conductivity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72633-z
Yu, W., Xie, H., & Bao, D. (2010). Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology, 21(5). https://doi.org/10.1088/0957-4484/21/5/055705
Zamiri, R., Azmi, B. Z., Shahriari, E., Naghavi, K., Saion, E., Rizwan, Z., & Husin, M. S. (2011). Thermal diffusivity measurement of silver nanofluid by thermal lens technique. Journal of Laser Applications, 23(4). https://doi.org/10.2351/1.3622205
Cai, Z., Tian, M., & Zhang, G. (2020). Experimental study on the flow and heat transfer of graphene-based lubricants in a horizontal tube. Processes, 8(12), 1–14. https://doi.org/10.3390/pr8121675
Chua, E. M., Shimeta, J., Nugegoda, D., Morrison, P. D., & Clarke, B. O. (2014). Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, allorchestes compressa. Environmental Science and Technology, 48(14), 8127–8134. https://doi.org/10.1021/es405717z
Gordon, J. P., Leite, R. C. C., Moore, R. S., Porto, S. P. S., & Whinnery, J. R. (1965). LongTransient Effects in Lasers with Inserted Liquid Samples. 3. https://doi.org/10.1063/1.1713919
Herrera-Aquino, R., Jiménez-Pérez, J. L., Altamirano-Juárez, D. C., López-Gamboa, G., Correa-Pacheco, Z. N., & Carbajal-Valdéz, R. (2019). Green Synthesis of Silver Nanoparticles Contained in Centrifuged Citrus Oil and Their Thermal Diffusivity Study by Using Thermal Lens Technique. International Journal of Thermophysics, 40(1). https://doi.org/10.1007/s10765-018-2466-0
Hwang, Y., Heo, Y., Yoo, Y., & Kim, J. (2014). The addition of functionalized graphene oxide to polyetherimide to improve its thermal conductivity and mechanical properties. Polymers for Advanced Technologies, 25(10), 1155–1162. https://doi.org/10.1002/pat.3369
Jiménez-Pérez, J. L., López-Gamboa, G., Sánchez-Ramírez, J. F., Correa-Pacheco, Z. N., Netzahual Lopantzi, A., & Cruz-Orea, A. (2021). Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique. International Journal of Thermophysics, 42(7). https://doi.org/10.1007/s10765-021-02861-6
John, J., Thomas, L., Kumar, B. R., Kurian, A., & George, S. D. (2015). Shape dependent heat transport through green synthesized gold nanofluids. Journal of Physics D: Applied Physics, 48(33). https://doi.org/10.1088/0022-3727/48/33/335301
Khabibullin, V. R., Usoltseva, L. O., Mikheev, I. v., & Proskurnin, M. A. (2023). Thermal Diffusivity of Aqueous Dispersions of Silicon Oxide Nanoparticles by Dual-Beam Thermal Lens Spectrometry. Nanomaterials, 13(6). https://doi.org/10.3390/nano13061006
Lenart, V. M., Astrath, N. G. C., Turchiello, R. F., Goya, G. F., & Gómez, S. L. (2018). Thermal diffusivity of ferrofluids as a function of particle size determined using the mode-mismatched dual-beam thermal lens technique. Journal of Applied Physics, 123(8). https://doi.org/10.1063/1.5017025
Liu, W. I., Malekahmadi, O., Amin, S., Ghashang, M., & Karimipour, A. (2019). A novel comprehensive experimental study concerned graphene oxide nanoparticles dispersed in water : Synthesise , characterisation , thermal conductivity measurement and present a new approach of RLSF neural network. International Communications in Heat and Mass Transfer, 109, 104333. https://doi.org/10.1016/j.icheatmasstransfer.2019.104333
Manikandan, S. P., & Baskar, R. (2021). Studies on thermophysical property variations of graphene nanoparticle suspended ethylene glycol/water. Chemical Industry and Chemical Engineering Quarterly, 27(2), 177–187. https://doi.org/10.2298/CICEQ200504036P
Noroozi, M., Zakaria, A., Radiman, S., & Wahab, Z. A. (2016). Environmental synthesis of few layers graphene sheets using ultrasonic exfoliation with enhanced electrical and thermal properties. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0152699
Novoselov, K. S., Geim, A. K., Morozov, S. v, Jiang, D., Zhang, Y., Dubonos, S. v, Grigorieva, I. v, & Firsov, A. A. (2000). Electric Field Effect in Atomically Thin Carbon Films. In Phys. Rev. Lett (Vol. 404). Kluwer. http://science.sciencemag.org/
Pech-May, N. W., Tabasco-Novelo, C., Quintana, P., Rodriguez-Gattorno, G., & Alvarado-Gil, J. J. (2023). Evidence of a Thermal Diffusivity Gap in Sintered Li-Co-Sb-O Solid Solutions. ACS Omega, 8(8), 7808–7815. https://doi.org/10.1021/acsomega.2c07557
Pratap, D., Eugenio, C., Singh, B., & Singh, S. (2018). Graphene oxide : An efficient material and recent approach for biotechnological and biomedical applications. January. https://doi.org/10.1016/j.msec.2018.01.004
Ramya, M., Nideep, T. K., Nampoori, V. P. N., & Kailasnath, M. (2019). Particle size and concentration effect on thermal diffusivity of water-based ZnO nanofluid using the dual-beam thermal lens technique. Applied Physics B: Lasers and Optics, 125(9). https://doi.org/10.1007/s00340-019-7294-9
Rodriguez, L. G., Iza, P., & Paz, J. L. (2016). Study of dependence between thermal diffusivity and sample concentration measured by means of frequency-resolved thermal lens experiment. 25(2), 1–9. https://doi.org/10.1142/S0218863516500223
Rutkowski, P., Klimczyk, P., Jaworska, L., Stobierski, L., & Dubiel, A. (2015). Thermal properties of pressure sintered alumina-graphene composites. Journal of Thermal Analysis and Calorimetry, 122(1), 105–114. https://doi.org/10.1007/s10973-015-4694-x
Shahriari, E., Moradi, M., & Raeisi, M. (2016). An experimental study of thermal diffusivity of Au nanoparticles : effects of concentration particle size. Journal of Theoretical and Applied Physics, 10(4), 259–263. https://doi.org/10.1007/s40094-016-0224-x
Shen, J., Soroka, A. J., Snook, R. D., Shen, J., Soroka, A. J., & Snookb, R. D. (1992). A model for cw laser induced modemismatched dualbeam thermal lens spectrometry based on probe beam profile image detection A model for cw laser induced mode-mismatched spectrometry based on probe beam profile image detection thermal lens. 700(1995). https://doi.org/10.1063/1.360329
Wilk, J., Smusz, R., Filip, R., Chmiel, G., & Bednarczyk, T. (2020). Experimental investigations on graphene oxide/rubber composite thermal conductivity. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72633-z
Yu, W., Xie, H., & Bao, D. (2010). Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology, 21(5). https://doi.org/10.1088/0957-4484/21/5/055705
Zamiri, R., Azmi, B. Z., Shahriari, E., Naghavi, K., Saion, E., Rizwan, Z., & Husin, M. S. (2011). Thermal diffusivity measurement of silver nanofluid by thermal lens technique. Journal of Laser Applications, 23(4). https://doi.org/10.2351/1.3622205