An Interacting Dark Energy Model with Nonminimal Derivative Coupling in the Parameterized Post-Friedmannian Framework
Main Article Content
Abstract
We investigation the parameterization of the cosmological model with the nonminimal derivative coupling of a scalar field where gravity is coupled nonminimally with the derivatives of dark energy components in the form of a scalar field. We follow the parameterized post-Friedmannian approach for the interacting dark energy theories. We show how the big number of free functions can be reduced by limiting certain assumptions to a few non-zero coefficients. We only consider the case that the dark sector contains at most second order in time derivatives of the metric and scalar fields. In this paper, we demonstrate their use through an example of the dark sector interactions model and classify them according to the current literature.
Downloads
Download data is not yet available.
Article Details
How to Cite
Widiyani, A., & Sutiono, A. (2022). An Interacting Dark Energy Model with Nonminimal Derivative Coupling in the Parameterized Post-Friedmannian Framework. Indonesian Journal of Physics, 33(2), 1-7. https://doi.org/10.5614/itb.ijp.2022.33.2.1
Section
Articles
References
[1] DES Collaboration et al., Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing, Phys. Rev. D 105, 023520 (2022).
[2] Planck Collaboration et al., Planck 2018 Results. VI. Cosmological Parameters, A&A 641, A6 (2020).
[3] Y.-H. Li, J.-F. Zhang, and X. Zhang, Exploring the Full Parameter Space for an Interacting Dark Energy Model with Recent Observations Including Redshift-Space Distortions: Application of the Parametrized Post-Friedmann Approach, Phys. Rev. D 90, 123007 (2014).
[4] Arianto, F. P. Zen, Triyanta, and B. E. Gunara, Attractor Solutions in Lorentz Violating Scalar-Vector-Tensor Theory, Phys. Rev. D 77, 123517 (2008).
[5] F. P. Zen, Arianto, B. E. Gunara, Triyanta, and A. Purwanto, Cosmological Evolution of Interacting Dark Energy in Lorentz Violation, Eur. Phys. J. C 63, 477 (2009).
[6] Arianto, F. P. Zen, B. E. Gunara, Triyanta, and Supardi, Some Impacts of Lorentz Violation on Cosmology, J. High Energy Phys. 2007, 048 (2007).
[7] A. Suroso and F. P. Zen, Cosmological Model with Nonminimal Derivative Coupling of Scalar Fields in Five Dimensions, General Relativity and Gravitation 45, 799 (2013).
[8] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Modified Gravity and Cosmology, Physics Reports 513, 1 (2012).
[9] H. Noh and J. Hwang, COSMOLOGICAL POST-NEWTONIAN APPROXIMATION COMPARED WITH PERTURBATION THEORY, ApJ 757, 145 (2012).
[10] T. Baker, P. G. Ferreira, and C. Skordis, The Parameterized Post-Friedmann Framework for Theories of Modified Gravity: Concepts, Formalism, and Examples, Phys. Rev. D 87, 024015 (2013).
[11] C. Skordis, A. Pourtsidou, and E. J. Copeland, Parametrized Post-Friedmannian Framework for Interacting Dark Energy Theories, Phys. Rev. D 91, 083537 (2015).
[12] A. Widiyani, Marliana, A. Suroso, and F. P. Zen, The Parameterized Post-Friedmannian Framework for Nonminimal Derivative Coupling with General Cosmological Perturbation Metric, J. Phys.: Conf. Ser. 1245, 012090 (2019).
[13] K. Nozari and N. Behrouz, An Interacting Dark Energy Model with Nonminimal Derivative Coupling, Phys. Dark Univ. 13, 92 (2016).
[14] A. Pourtsidou, C. Skordis, and E. J. Copeland, Models of Dark Matter Coupled to Dark Energy, Phys. Rev. D 88, 083505 (2013).
[15] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. ea Jarosik, E. Komatsu, and L. Page, Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, The Astrophysical Journal Supplement Series 170, 377 (2007).
[16] L. Amendola, Cosmology with Nonminimal Derivative Couplings, Physics Letters B 301, 175 (1993).
[17] S. Capozziello, G. Lambiase, and H.-J. Schmidt, Nonminimal Derivative Couplings and Inflation in Generalized Theories of Gravity, Annalen Der Physik 9, 39 (2000).
[18] A. Suroso and F. P. Zen, Varying Gravitational Constant in Five Dimensional Universal Extra Dimension with Nonminimal Derivative Coupling of Scalar Field, Adv. Stud. Theor. Phys 6, (2012).
[19] A. Suroso, F. P. Zen, and B. E. Gunara, Nonminimal Derivative Coupling in Five Dimensional Universal Extra Dimensions and Recovering the Cosmological Constant, in AIP Conference Proceedings, Vol. 1454 (American Institute of Physics, 2012), pp. 47–50.
[20] A. Widiyani, A. Suroso, and F. P. Zen, Randall-Sundrum Cosmological Model with Nonminimal Derivative Coupling of Scalar Field, in AIP Conference Proceedings, Vol. 1656 (AIP Publishing LLC, 2015), p. 050006.
[21] L. Feng, Y.-H. Li, F. Yu, J.-F. Zhang, and X. Zhang, Exploring Interacting Holographic Dark Energy in a Perturbed Universe with Parameterized Post-Friedmann Approach, Eur. Phys. J. C 78, 865 (2018).
[2] Planck Collaboration et al., Planck 2018 Results. VI. Cosmological Parameters, A&A 641, A6 (2020).
[3] Y.-H. Li, J.-F. Zhang, and X. Zhang, Exploring the Full Parameter Space for an Interacting Dark Energy Model with Recent Observations Including Redshift-Space Distortions: Application of the Parametrized Post-Friedmann Approach, Phys. Rev. D 90, 123007 (2014).
[4] Arianto, F. P. Zen, Triyanta, and B. E. Gunara, Attractor Solutions in Lorentz Violating Scalar-Vector-Tensor Theory, Phys. Rev. D 77, 123517 (2008).
[5] F. P. Zen, Arianto, B. E. Gunara, Triyanta, and A. Purwanto, Cosmological Evolution of Interacting Dark Energy in Lorentz Violation, Eur. Phys. J. C 63, 477 (2009).
[6] Arianto, F. P. Zen, B. E. Gunara, Triyanta, and Supardi, Some Impacts of Lorentz Violation on Cosmology, J. High Energy Phys. 2007, 048 (2007).
[7] A. Suroso and F. P. Zen, Cosmological Model with Nonminimal Derivative Coupling of Scalar Fields in Five Dimensions, General Relativity and Gravitation 45, 799 (2013).
[8] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Modified Gravity and Cosmology, Physics Reports 513, 1 (2012).
[9] H. Noh and J. Hwang, COSMOLOGICAL POST-NEWTONIAN APPROXIMATION COMPARED WITH PERTURBATION THEORY, ApJ 757, 145 (2012).
[10] T. Baker, P. G. Ferreira, and C. Skordis, The Parameterized Post-Friedmann Framework for Theories of Modified Gravity: Concepts, Formalism, and Examples, Phys. Rev. D 87, 024015 (2013).
[11] C. Skordis, A. Pourtsidou, and E. J. Copeland, Parametrized Post-Friedmannian Framework for Interacting Dark Energy Theories, Phys. Rev. D 91, 083537 (2015).
[12] A. Widiyani, Marliana, A. Suroso, and F. P. Zen, The Parameterized Post-Friedmannian Framework for Nonminimal Derivative Coupling with General Cosmological Perturbation Metric, J. Phys.: Conf. Ser. 1245, 012090 (2019).
[13] K. Nozari and N. Behrouz, An Interacting Dark Energy Model with Nonminimal Derivative Coupling, Phys. Dark Univ. 13, 92 (2016).
[14] A. Pourtsidou, C. Skordis, and E. J. Copeland, Models of Dark Matter Coupled to Dark Energy, Phys. Rev. D 88, 083505 (2013).
[15] D. N. Spergel, R. Bean, O. Doré, M. R. Nolta, C. L. Bennett, J. Dunkley, G. Hinshaw, N. ea Jarosik, E. Komatsu, and L. Page, Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, The Astrophysical Journal Supplement Series 170, 377 (2007).
[16] L. Amendola, Cosmology with Nonminimal Derivative Couplings, Physics Letters B 301, 175 (1993).
[17] S. Capozziello, G. Lambiase, and H.-J. Schmidt, Nonminimal Derivative Couplings and Inflation in Generalized Theories of Gravity, Annalen Der Physik 9, 39 (2000).
[18] A. Suroso and F. P. Zen, Varying Gravitational Constant in Five Dimensional Universal Extra Dimension with Nonminimal Derivative Coupling of Scalar Field, Adv. Stud. Theor. Phys 6, (2012).
[19] A. Suroso, F. P. Zen, and B. E. Gunara, Nonminimal Derivative Coupling in Five Dimensional Universal Extra Dimensions and Recovering the Cosmological Constant, in AIP Conference Proceedings, Vol. 1454 (American Institute of Physics, 2012), pp. 47–50.
[20] A. Widiyani, A. Suroso, and F. P. Zen, Randall-Sundrum Cosmological Model with Nonminimal Derivative Coupling of Scalar Field, in AIP Conference Proceedings, Vol. 1656 (AIP Publishing LLC, 2015), p. 050006.
[21] L. Feng, Y.-H. Li, F. Yu, J.-F. Zhang, and X. Zhang, Exploring Interacting Holographic Dark Energy in a Perturbed Universe with Parameterized Post-Friedmann Approach, Eur. Phys. J. C 78, 865 (2018).