
Indonesian Journal of Physics
Kontribusi Fisika Indonesia

Vol. 14 No.4, Oktober 2003

The Calogero-Moser Model Based On Doubly-Laced Lie Algebras

Alexander A. Iskandar1) and I Nengah Artawan2)

1)Department of Physics, Institut Teknologi Bandung
Jl. Ganesa 10, Bandung 40132, INDONESIA
2)Department of Physics, Universitas Udayana
Kampus Bukit Jimbaran, Bali, INDONESIA

email: iskandar@fi.itb.ac.id

Abstract

The Calogero-Moser model is an one-dimensional dynamical system that describes N pairwise interacting par-
ticles on a line with nonlinear interaction potentials. These potentials are associated with the root system of the
Simple Lie Algebras. The Calogero-Moser model is integrable, and its integrability is describe through the Lax
pair operators built in the root system of the associated Lie algebra. In the present work, a new Lax pair operator
for the Calogero-Moser model based on the Doubly Simply-Laced Lie algebras is presented. It is shown that the
canonical equation of motion obtained from the Lax pair formulation and from the Hamiltonian formulation are
consistent.

Keywords: Calogero-Moser Model, Integrability, Doubly-Laced Lie Algebras

1. Introduction

The Calogero-Moser model,1) was first inde-
pendently studied back in the 70s. This model is a
dynamical model that describe N particles on a line
identified by their coordinates xi, i = 1, 2, . . . , N in-
teracting with a pairwise potential f(xi, xj). Several
realization of this potential have been studied in the
literature (for a comprehensive review see ref2)). It
was well known that these potentials, classified into
four classes : 1/q2-type, 1/ sin2(q)-type, 1/ sinh2(q)-
type and the elliptic type ℘(q) with q is the distance
of the interacting pair of particles, describe an inte-
grable theory.

In general this integrability is guaranteed by
the Lax pair operator formalism. Recently, Bord-
ner et.al3) propose a general Lax pair operator for
the Calogero-Moser model based on Simply-Laced Lie
algebras. They have shown that this the new Lax
pair operator is consistent in which it reproduces the
equation of motion of the Calogero-Moser model in
question.

In the present work, a new Lax pair opera-
tor for the Calogero-Moser model for the first three
potential types based on the Non Simply-Laced Lie
algebra is presented. It will also be shown that the
equation of motion derived from this Lax formalism
is consistent with the Hamiltonian formalism. It is
believed that this Lax pair operator have never been
presented in any literature.

2. The Calogero-Moser Model

The Calogero-Moser model is describe by the
following Hamiltonian:3)

H =
1

2
p2 − g2

2

∑

α∈∆

x(α · q)x(−α · q), (1)

where q and p are the dynamical variables of
the system represented as vectors in IR

N , q =
(q1, q2, . . . , qN ) ∈ IR

N and p = (p1, p2, . . . , pN ) ∈
IR

N . ∆ is the set of all roots associated with the
underlying Lie algebra which are also represented as
a vector in IR

N ,

∆ = {α, β, γ, . . . }, α ∈ IR
N . (2)

We follow the standard notation of the Lie algebras
and its representation in root space, see for exam-
ple the book by Georgi or the book by Varadara-
jan.4) The interaction coupling parameter between
the particles is designated as g. And the function
x(α · q) are unique for each class of Calogero-Moser
model. In the following, the function x(α · q) and
some related functions are defined for the three class
of potential considered in this work.

1. rational potential: 1/q2

x(t) =
1

t
, y(t) = z(t) = − 1

t2
. (3)
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2. trigonometric potential: 1/ sin2(q)

x(t) = a cot(at), y(t) = z(t) = − a2

sin2(at)
.

(4)

3. hyperbolic potential: 1/ sinh2(q)

x(t) = a coth(at), y(t) = z(t) = − a2

sinh2(at)
.

(5)

Note that the functions y(t) and z(t) are the deriva-
tives of x(t) and these functions satisfy the following
sum rule

y(u)x(v) − y(v)x(u) = x(u+ v)[z(u) − z(v)], (6)

where u, v ∈ CI .
The canonical equation of motion of the

Calogero-Moser model are derived from the above
Hamiltonian as follows :

q̇ =
∂H

∂p
= p, (7)

ṗ = −∂H
∂q

= −g
2

2

∑

α∈∆

[x(α · q)y(−α · q)

−x(−α · q)y(α · q)]α. (8)

Note that from the definition of the Hamilto-
nian, equation (1) above, there exist only one cou-
pling parameter in the theory.

3. The Lax Pair Operator

The standard Lax pair operator formalism for
integrable system have been widely used not only
in linear systems but most importantly in nonlinear
cases. In this formalism, an exact solution to the
original problem is found from the inverse scattering
transform from an associated scattering problem.

Given a system of interacting particles de-
scribe by the following Hamiltonian,

H =
1

2
p2 + u(x, t), (9)

with u(x, t) is the interaction potential (in the case
considered is a nonlinear interaction potential). The
general nonlinear equation of motion derived from
this Hamiltonian is given as,

ut = N(u), (10)

where N(u) is some nonlinear operator.
It is assumed that the potential u(x, t) is asso-

ciated with a Hermitean scattering problem operator
L(u) = −∂xx + u(x, t) whose eigenvalue equation is
given as,5)

Lψ = λψ, (11)

with the eigenvalue λ is assumed constant with time.
The evolution of the eigenfunction ψ is governed by
the operator M ,

ψt = Mψ. (12)

From the above, we can deduce that the evolution of
the operator L(u) is given as the commutation of the
Lax pair operators M and L,

Lt = ut ≡ [M,L]. (13)

A wisdom most commonly abide, is that a sys-
tem is said to be integrable if there exist a Lax pair
operators associated with it. Therefore the integra-
bility of the Calogero-Moser model based on the non
simply-laced Lie algebras is claimed by the existence
of a Lax pair operators associated to the Calogero-
Moser model in question.

The proposed Lax pair operator for the
doubly-laced case of the Lie algebras Bn, Cn and F4

are given as follows,

L(q, p) = p ·H +X +Xr, (14)

M(q) = D + Y + Yr, (15)

the structure of above definition of the Lax operators
are the same as given in ref.3) In the above,

Hβγ = β δβγ (16)

Dβγ = −ig [z(β · q) +
∑

κ∈∆, κ·β=1

z(κ · q)],(17)

and the operators X,Xr, Y and Yr are redefined as

X = i
∑

α∈∆ x(α · q)E(α),

Y = i
∑

α∈∆ y(α · q)E(α),
(18)

Xr = i
∑

α∈∆ x(α · q)Ed(α),

Yr = i
∑

α∈∆ y(α · q)Ed′(α),
(19)

with the matrices E(α), Ed(α) and Ed′(α) are given
as,

E(α)βγ = δβ−γ,α( g δα2,2 + g′ δα2,4), (20)

Ed(α)βγ = δβ−γ,2α{ g (2 δβ2,2 δγ2,2 δα2,2

+ δβ2,4 δγ2,4 δα2,2)

+ 2 g′ δβ2,4 δγ2,4 δα2,4}, (21)

Ed′(α)βγ = δβ−γ,2α{ g (δβ2,2 δγ2,2 δα2,2

+ δβ2,4 δγ2,4 δα2,2)

+ g′ δβ2,4 δγ2,4 δα2,4}. (22)

In the above definition, the operators Ed and Ed′

are called the double root discriminators. Although
in the above definition we have assigned two values of
coupling parameters, g which is associated with the
short root, α2 = 2, and g′ which is associated with
the long root, α2 = 4, it turns out that consistency
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condition yield a relation between these two coupling
parameters, g′ = g

√
2.

4. Consistency of the Equation of Motion

In terms of the matrix operators defined in the
previous section, the Lax equation (13) is given as,

d(X +Xr)

dt
= [p ·H,Y + Yr], (23)

dp

dt
·H = [X +Xr, Y + Yr]diag, (24)

0 = [X +Xr, D + Y + Yr]off diag.(25)

The consistency of the proposed Lax operator is ob-
tained by comparing the Calogero-Moser equation of
motion obtained from the Lax formalism, equation
(13) or the above, with the Hamiltonian equation of
motion. The general proof of this consistency follow
the similar lengthy steps as in ref.,3) and thus it will
not be reproduced here. Instead, two explicit cases
will be examined.

In the matrix element evaluation of the Lax
equation, it should be noted that the L operator is
a Hermitean, whereas the M operator is an anti-
Hermitean matrix. The diagonal part of the Lax
equation (13) is calculated to be,

(Lt)ββ =
∑

κ∈∆

[LβκMκβ −MβκLκβ ], (26)

or explicitly,

ṗ · β = 2
∑

κ∈∆

{[Xβκ + (Xr)βκ][Yκβ + (Yr)κβ ]}. (27)

The two explicit examples are the simplest
doubly-laced Lie algebras, i.e. B2 and C3 cases.

4.1. B2 case

The root space of this algebra is divided into
two sets,

∆s = {±β1,±(β1 + β2)},
∆l = {±β2,±(2 β1 + β2)}.

b
1

b
2

Figure 1. Dynkin diagram of the B2 or SO(5) Lie
algebra.

For β = (β1 + β2) ∈ ∆s, the equation of motion
obtained from the Hamiltonian formalism, equation
(8), yield

ṗ · (β1 + β2)

= − 2 { 2 g2 x((2 β1 + β2) · q) y((2 β1 + β2) · q)
+ 2 g2 x((β1 + β2) · q) y((β1 + β2) · q)
+ 2 g2 x(β2 · q) y(β2 · q)}, (28)

and the Lax formalism, equation (27), yield

ṗ · (β1 + β2)

= − 2 { g′2 x((2 β1 + β2) · q) y((2 β1 + β2) · q)
+ 2 g2 x((β1 + β2) · q) y((β1 + β2) · q)
+ g′2 x(β2 · q) y(β2 · q)}. (29)

In the above the non-trivial solution of the Ed and
Ed′ operators in equation (27) are obtained from the
following table

β γ α

β2 ±(2 β1 + β2) −β1

(β1 + β2)
(2 β1 + β2) ±β2 β1

(β1 + β2)

It is readily seen that the two equation of motions
are identical provided the coupling parameters are
related as g′ = g

√
2.

Further, for β = (2β1+β2) ∈ ∆l, the equation
of motion obtained from the Hamiltonian formalism,
equation (8), yield

ṗ · (2β1 + β2)

= − 2 { 2 g2 x(β1 · q) y(β1 · q)
+ 4 g2 x((2 β1 + β2) · q) y((2 β1 + β2) · q)
+ 2 g2 x((β1 + β2) · q) y((β1 + β2) · q)}, (30)

and the Lax formalism, equation (27), yield

ṗ · (2β1 + β2)

= − 2 { 2 g′2 x((2 β1 + β2) · q) y((2 β1 + β2) · q)
+ 2 g2 x((β1 + β2) · q) y((β1 + β2) · q)
+ 2 g2 x(β1 · q) y(β1 · q)}. (31)

As in the previous case,the non-trivial solution of the
Ed and Ed′ operators in equation (27) are obtained
from the table above, and again the two equation of
motions are consistent when g′ is chosen to be equal
to g

√
2.

4.2. C3 case

The root space of this algebra is divided into
two sets,

∆s = {±β2,±β3,±(β1 + β2),±(β2 + β3),

±(β1 + β2 + β3),±(β1 + 2β2 + β3)},
∆l = {±β1,±(β1 + 2β2),±(β1 + 2β2 + 2β3)}.

For β = β2 ∈ ∆s, the equation of motion obtained
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b
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2

b
3

Figure 2. Dynkin diagram of the C3 or Sp(3) Lie
algebra.

from the Hamiltonian formalism, equation (8), yield

ṗ · β2

= − 2 {− 2 g2 x(β1 · q) y(β1 · q)
+ 2 g2 x(β2 · q) y(β2 · q) − g2 x(β3 · q) y(β3 · q)
+ g2 x((β2 + β3) · q) y((β2 + β3) · q)
+ 2 g2 x((β1 + 2β2) · q) y((β1 + 2β2) · q)
− g2 x((β1 + β2 + β3) · q) y((β1 + β2 + β3) · q)
+ g2 x((β1 + 2β2 + β3) · q) y((β1 + 2β2 + β3) · q)},

(32)

and the Lax formalism, equation (27), yield

ṗ · β2

= − 2 { 2 g2 x(β2 · q) y(β2 · q)
+ g2 x((β2 + β3) · q) y((β2 + β3) · q)
+ g′2 x((β1 + 2β2) · q) y((β1 + 2β2) · q)
+ g2 x((β1 + 2β2 + β3) · q) y((β1 + 2β2 + β3) · q)
− g′2 x(β1 · q) y(β1 · q) − g2 x(β3 · q) y(β3 · q)
− g2 x((β1 + β2 + β3) · q) y((β1 + β2 + β3) · q)}.

(33)

In the above the non-trivial solution of the Ed and
Ed′ operators in equation (27) are obtained from the
following table

β γ α

β1 ±(β1 + 2 β2) −β2

(β1 + β2)
±(β1 + 2 β2 2 β3) −(β2 + β3)

(β1 + β2 + β3)
(β1 + 2 β2) ±β1 β2

(β1 + β2)
±(β1 + β2 + β3) −β3

(β1 + 2 β2 + β3)
(β1 + 2 β2 + 2 β3) ±β1 (β2 + β3)

(β1 + β2 + β3)
±(β1 + 2 β2) β3

(β1 + 2 β2 + β3)

It is readily seen that the two equation of motions
are identical provided the coupling parameters are
related as g′ = g

√
2.

Further, for β = (β1+ 2β2) ∈ ∆l, the equation
of motion obtained from the Hamiltonian formalism,

equation (8), yield

ṗ · (β1 + 2β2)

= −2 { 2 g2 x(β2 · q) y(β2 · q) − 2 g2 x(β3 · q) y(β3 · q)
+ 2 g2 x((β1 + β2) · q) y((β1 + β2) · q) +

+ 4 g2 x((β1 + 2β2) · q) y((β1 + 2β2) · q)
+ 2 g2 x((β1 + 2 β2 + β3) · q) y((β1 + 2 β2 + β3) · q)},

(34)

and the Lax formalism, equation (27), yield

ṗ · (β1 + 2β2)

= −2 { 2 g2 x((β1 + β2) · q) y((β1 + β2) · q)
+ 2 g2 x((β1 + 2 β2 + β3) · q) y((β1 + 2 β2 + β3) · q)
+ 2 g′2 x((β1 + 2β2) · q) y((β1 + 2β2) · q)
+ 2 g2 x(β2 · q) y(β2 · q) − 2 g2 x(β3 · q) y(β3 · q)}.

(35)

As in the previous case,the non-trivial solution of the
Ed and Ed′ operators in equation (27) are obtained
from the table above, and again the two equation of
motions are consistent when g′ is chosen to be equal
to g

√
2.

5. Conclusion

From the above exposition, one can conclude
that the Lax pair operator introduced in this work,
equation (14)-(22), is associated with the Calogero-
Moser model based on the non simply-laced Lie al-
gebras, to be precise the doubly-laced cases. Fur-
ther, one can also conclude that from the existence
of the Lax pair operators, the Calogero-Moser mod-
els based on the doubly-laced Lie algebras are in-
tegrable. The proposed Lax pair operator returns
back to the Lax pair operator proposed by Bordner
et.al.,,3) when applied to the simply-laced Lie alge-
bra cases. A natural generalization to include the
triply-laced case of the G2 Lie algebra is straightfor-
ward.
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