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Abstract

A numerical study has been carried out on the effects of shallow sinusoidal modulation on the refractive index of linear and
nonlinear medium. The result on the linear system demonstrates generally the existence of a transmission band gap at a
certain range of wavelength as usually revealed by analytic solution obtained with strictly nonreflecting boundary
condition. It is shown in the numerical results that a more general boundary condition leads to similar transmission
characteristics as the device length becomes much larger than the modulation period. A further description is given on the
variation of gap characteristics with the system parameters. The extension by including the nonlinear term representing the
intensity dependent refractive index (IDRI) effect gives rise to a new feature of the transmission gap, exhibiting imperfect
reflection characterized by the appearance of transmission channels in the gap. As the input intensity increases, further
modification of the gap feature occurs in conjunction with the appearance and growth of hysteretic effect featuring
multistable states useful for logic functions. The variations of hysteretic characteristics with respect to the system
parameters are also described.
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1. Introduction effect”. The bistable and multistable states associated
with this hysteretic behavior are known to promise useful
optical logic functions, and the variation of its
characteristics is therefore examined with respect to
variation of the system parameters.

The periodic modulation of refractive index of a
dielectric medium along the wave propagation direction
has been known to result in useful optical devices such as
optical filter and reflector. Studies employing the slowly
varying envelope (SVE) approximation and spatial 2. Basic Formulation
averaging (SA) in the case of linear media with shallow
modulation and nonreflecting boundary condition have
led to an analytical solution of the Helmholtz equation,
demonstrating the existence of a transmission band gap".

The one-dimensional optical periodic system
considered is shown in Figure 1, where the refractive
indices in the entire region are specified as follows:

As this boundary condition is rarely realized in practice, it n(z) =no ;20
is interesting and useful to study the consequence of n(z)=ny+An(z) ;0<z<L (modulated region) (1)
relaxing this boundary condition. For this purpose, a less
restrictive boundary condition is introduced, and its effect nz) =ny’ ;z2L
on the transmission and band gap characteristics are naA
examined numerically.

In order to further explore potentially useful new \'_/\/—\ ,
functions of the system, we have extended the linear case o n(z) = no + An(z) o
by inc.luding a third order non.linea.r term arising from the In coming wave Out going
intensity dependent refractive index (IDRI) effect. -
Restricting our consideration to shallow modulation of z
both linear and nonlinear refractive index, and working ! II I
within the SA and SVE approximations, two coupled 20 -

differential equations have been derived along with two
invariant quantities as reported previously by other
researchers”. On the basis of these equations, we have
further carried out numerical calculation using the more
general boundary condition for the determination of the
wave transmission characteristics of the periodic system
with a number of different system parameters at various
input powers. Additionally, we have also studied the
hysteretic behavior of the transmitted power with respect
to input power, which is expected to arise from the IDRI

Figure 1. Description of the optical system with periodic
modulation of the index in region II.

The refractive indices are assumed to be uniform in the

transversal directions. In eq. (1), ny and n,’ for region |
and region II are constant but not necessarily the same.
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The refractive index in region II is assumed to vary
sinusoidally along the z direction according to

n(z) = no+ ny cos(Gz) 2)

where n; cos(Gz)=An(z) in eq. (1), and #n, is the depth of
modulation (modulation index) and G is related to the
period of modulation A by

21
G= N 3)

The depth of modulation #n, is taken to be much smaller
than n,.

The wave is assumed to propagate in the z
direction and no boundary conditions are imposed in the x
and y direction. Hence, the wave propagation in each
region is governed by the one dimensional Helmholtz
equation

d’ )

— E(z)+k"E(z)=0 4
dz

with k:En(z), ¢ denoting the velocity of light in
c

vacuum and n(z) given by eqs.(1) and (2).
Neglecting 7,® with respect to 7,° we may rewrite
eq.(4) in the following form for region 11

2 2
%E(z) +(:—2(n02 + 2nyn, cos Gz)E(z) =0 %)
/7

Assuming that the wave is incident from the left, the
general solution of eq.(5) can be written as

E(2)=A, exp(ikyz) + By exp(-ikoz) ;2z<0
E(2) = A(z) exp (ikyz)+ B(z) exp (~ikyz) ;0<z<L(6)
E(z)=A’ exp(iko z) z>L

where k,=(w/c)ny. The solution given by eq.(6) satisfies
the continuity condition at z=0 and z=L, with A(z) and
B(z) representing respectively the forward and backward
traveling waves amplitudes. In the following steps, the
general solution given by eq. (6) is substituted into eq.(5),
which is then reduced to 1% order differentia equation by
applying the slowly varying envelope approximation |4”|
« |2kpA’] and |B”| « |2kyB’|. Finally, employing spatial
averaging at 2k=G, leads us to two coupled 1* order
differential equations for A(z) and B(z) respectively.
These equations will be separately discussed in the
following for the cases of linear and nonlinear refractive
indices.

3. The linear case

The analytical result of this case has been worked
out basically by Yeh for specific and restrictive boundary
condition®, but may not be widely known to readers of
this journal. It is therefore worthwhile to briefly
summarized it here prior to discussions of the more
general cases involving less restrictive and hence more
practical boundary condition as well as the case involving
optically nonlinear medium.

For the linear case, ny is independent of £, and the
coupled differential equations resulted from the
mathematical manipulations described above are given by

iA(z) = —ikB(z)e"™" @)
dz

—iAk z

iB(z) =ixA(z)e (8)
dz

where the phase mismatch Ak is
A=2ky—- G )
and the coupling constant

k=" Th (10)
2c A
which denotes the coupling effect between the two
counter propagating waves.

By taking A(z)=|A(z)|exp(id,) and
B(z)=|B(z)|exp(i¢y), then from the two equations one
readily obtains two well known invariant quantities, 7,
and / expressed by

|4 - |Bf = |T.f (11)
_ Ak 2
F—|A||B|cosq/+2K|A| (12)

where y=¢,(z)— ¢y(z)— Akz.

Upon application of nonreflecting boundary
condition B(L)=0 as commonly adopted (albeit
implicitly), one is led to an analytic solution of the form

s cosh s(L — z) +i(Ak/2) sinh s(L — z) .
ST scoshsL+i(aki2ysinhst O XPUAKIDT 5
—iksinh s(L - z)
s cosh sL +i(Ak/2)sinhsL

A(2)

B(z)=

A(0) exp[—i(Ak/2)z]

where s = [ - (Ak/2)?]"% which leads to s=k in the case
of perfect matching. Further, the analytic expression for

the transmittance defined by T=[4(L)* / |4(0)? is given by

2 12
T=1- 2Ksmh sLZ. . (14)
s“ cosh” sL +(Ak/2)" sinh” sL
The existence of a transmission gap is clearly indicated by
7=0 at s=0. It is rather straight forward to derive on the
basis of eq.(14) and eq.(10) an expression for the gap as
follows

AN=2m A (15)
which is centered at
7\40 = 2”[0/\ (16)

It is clear from eq.(15) that the gap width increases
linearly with n; and A separately, while the gap center
varies linearly with A only as indicated by eq.(16).

It is noteworthy that instead of employing the
B(L)=0 boundary condition, implying the restriction
An(z)=0 at z=L, we shall henceforth consider a boundary
condition specified by the more general relationship

B(L)y=r(L)A(L) a7
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where (L) is the local Fresnel reflection coefficient at
z=L, which is expressed by
n; cos(GL)

rl)=———
2ny +n, cos(GL)

(18)
for the case of n(') =n,. As a consequence, analytic

expressions for A(z), B(z) and T given respectively by
eqs.(13) and (14) do not hold any longer in this case.
Numerical method must be employed in solving for A(z)

6
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and B(z) directly from eq.(7) and (8). The resulted
solution for 4(z) and B(z) in region II are illustrated in
Figure 2 for the case of different Ak values at L=300pum.
The amplitudes A(z) and B(z) are shown to decay along z
direction with B=0 at L=300um, indicating that the wave
is totally reflected at L=300um for the Ak and A=0.5pm
considered. However, for the special case satisfying
cos(GL)=0 or L=2m+1)A/4 where m=0, 1, 2 etc., we
have =0 at z=L. In this case, the nonreflecting boundary

0.5

Pu(2), Pp(2)

0 100 200 300

0.(2), P(Z)

200 300

Figure 2. Graphical representations for the amplitudes and phases of A(z) and B(z) with n=2, n,=0.004, A=0.5um,
L=300pm and |A(L)}=1V/um at (a) Ak=0, (b) Ak=0.12um™, and (c) Ak=0.15um™.



26

KFI Vol. 14 No. 1, 2003

| JWWWW
2 2.05
A
(a)
1
08 |
0.6 |
'—
04 f
02
fo6 198 2 202 204
A
(©)

0 o5 2 2.05
A
(b)
1 . "
0.8/
0.6/
0.4
0.2
0 L '
0.96 098 1 102 1.04
A
(d)

Figure 3. Transmission characteristics exhibiting a band gap obtained numerically for ny=2 with (a) n,=0.03, A=0.5um
L=300um. (b) 7,=0.03, A=0.5um, L=50um. (c) 7,=0.01, A=0.5um, L=300um and (d) »,=0.01, A=0.25um, L=300um.

condition is recovered. It is not difficult to convince
oneself that this condition is almost automatically
satisfied as long as L»A or m»l as demonstrated
numerically in this particular case. It is important to point
out from Figures 2(a) and (b) that the rapidly decaying
|A(z)| and |B(z)| curves coincide perfectly in the case
Ak=0, while |B(z)| curve lies closely below |4(z)| curve
exhibiting non monotonic variation for Ak#0 (around the
gap edge). At even larger value of Ak (further away from
the gap center), as shown in Figure 2(c), the curves
display non decaying oscillation with the |B(z)| curve
lying far below the |4(z)| curves. The corresponding phase
function in the first two cases show similar pattern for
|A(z)| and |B(z)|, but differ considerably in the third cases.

The transmittance as a function of Ak or A is
plotted in Figure 3 for different L, A, and »n,. While the
existence of a band gap is clearly visible in all cases, a
comparison between Figure 3(a) and 3(b) indicates that
the gap becomes more sharply defined with near perfect
reflection for large L. Comparison between Figure 3(a)
and 3(c) demonstrates that a smaller modulation depth
leads to a narrower band gap. It is also clear from
comparing Figure 3(c) with Figure 3(d) that a smaller A

results in a shift of the gap center position to smaller A as
well as a narrower gap. These variations of gap
characteristics are consistent with the analytic result
described earlier. For the more general cases of finite A/L,
our numerical formulation is expected to offer the desired
solution unavailable from the more restrictive analytic
formulation.

4. The case with IDRI effect

By taking into account the IDRI effect of the
nonlinear medium in region II, the modulated refractive
index becomes

n(z) =ny+ns|E(z)]*+n, cos(Gz) (19)
Applying the same procedure as employed in the

preceding section, we arrive at the following coupled
equations:

l.d/;(z) — KB(2)e™ +a0 A(2) [ +2| B(2) |2)A(Z) (20)
—i% =A™ +ol2| AR+ B BG) Q1)
Z
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where Ak and k are given by the same expression in eq.
(9) and (10) respectively, and the additional parameter is
defined by

on, 2mn,
A

which is introduced by the nonlinear effect. The two
invariant quantities in this case are given respectively by

A"~ |B]* = T (23)

(22)

c

which is identical in form with eq. (11) and
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3002 Ak 2
N |A||B|cosw+(2K|B| R 2Kj|A| 24)
which has the additional term coming from the obvious
contribution of nonlinear effect represented by o. The
numerical solutions of eq. (20) and (21) and the related
transmission characteristics will be described and
discussed separately in the following.

4.1 Behaviors A(z) and B(z)

The calculated results for A(z) and B(z) are
presented in Figure 4 for different boundary conditions

4
I #.(z)
2l $(2)
Fomny
=
< \
<Y
s
s | o
-2
| P
“ 100 200 300
Z
4
Jq — @(2)
L R z
i #o) |
i
| N \
=2 oF— - |
- |
‘B&. | [
-2 | Ve ]
7
“ 100 200 300
zZ
4
e
2l [ it #(2) ||
7
= |
~ O ST
= / |
< L_|- J—
-2 |
L7
“ 100 200 300
Z

Figure 4. Graphical representations for |4(z)|, |B(z)| and ¢,(2), ¢y(z) for ng=2, n,=0.03, n,=2x10"*um*/V*, A=0.5um, Ak=0,
L=300um for (a) |[A(L)=0.15V/um, (b) |[4(L)[=0.5V/um and (c) |[4A(L)[=5V/pm.
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specified by the coefficient of reflection r obtained by
assuming B(L)«A(L). This assumption is plausibly
justified for the case of shallow grating (n;«n,) and weak
IDRI effect (n,«n;) considered here. The resulted
expression for 7 is given as follows

n,cos(GL) + | A(L)|"
2n + 1y c08(GL) + my| A(L)”

(25)

The resulted solution of |4(z)| and |B(z)| for Ak=0 and
L=300um at different field |A(L)| are plotted in Figure
4(a) and Figure 4(b). It is interesting to note that at a
smaller value of |[4(L)|, the two curves coalesce perfectly.
Both the amplitude and the phase display different
characteristics from those described in Figure 2. At an
intermediate |4(L)|, the phases becomes asymmetrically
modified, while the field profile remain practically the
same. When |A(L)| is further increased, |B(z)| becomes
smaller than |A(z)|. It is found that this trend continues in
the same direction displaying more complicated variations
with z when |A(L)| becomes larger. It is also interesting to
point out, as will be shown later, that the transmittance
characteristics are also clearly affected by the presence of
nonlinear property as indicated by their changes with
respect to |A(L)|.

0.8;
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0.4;

0.27

1.95 2 2.05

4.2 Transmittance characteristics

The transmittance curves corresponding to the
cases considered in Figure 4 are described in Figure 5.
Although the basic feature of a transmission band gap
remains visible in those Figure ures, it is also obvious that
the gap is now split by the presence of transmission
channel in the gap, indicating imperfect reflection in the
region. It is shown that for |4(L)|=0.15V/um, the original
linear gap admits a single transmission channel at the gap
center. For |A(L)[=0.5V/um, two separate transmission
channels are allowed in the band gap. Increasing |4(L)| to
6V/um leads to visible distortion or asymmetry of the gap
structure. It is found that the asymmetry is due to the
different values of |4(L)| for the same Ak of opposite
signs. This difference or distortion which increases with
|A(L)| is suspected to have it origin in the nonlinear IDRI
effect. It must be added that this enhanced distortion is
also accompanied with the appearance of additional
transmission channels.

2.05

(b)

(©

Figure 5. Transmission characteristics of nonlinear system at (a) |4(L)[=0.15V/um, (b) |A(L)=0.5V/um, and (c)
|A(L)|=6V/um showing variation of nonlinearity induces transmission channels in the linear gap due to different input

intensities.
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4.3 The Optical Multistable and Bistable Feature

For a further study of nonlinear property arising
from the IDRI effect, we consider the relationship
between the output intensity and the corresponding input
intensity. The result of our numerical calculation is shown
in Figure 6 which exhibits hysteretic characteristic when

limited to be around 30V/um by our assumption leading
to eq.(25)) as shown in Figure 6(b) and (c). This feature
results in the optical bistable states, which seems to
“proliferate” at higher input intensity. The hysteretic
effect can be characterized by the hysteresis width (wy)
and the corresponding turning point /, indicated in Figure

the input intensity rises beyond a certain value (|[4(0)] is 6(b).
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Figure 6. The output intensities [4(L)]* are plotted as a function of input intensities [4(0)* for ny=2, n,=0.005, L=300pm,
n,=2x10"°um*/ V2, and Ak=0.0005um™" showing (a) nonhysteretic pattern for A=0.65um, (b) optical bistable pattern for

A=0.5um and (c) optical multistable pattern for A=0.25um.

The hysteretic behavior shown in Figure 7 varies
with the changes of L, n|, n, and Ak These variations in
term of the hysteretic parameters are summarized in
Figure 8. The value of wj increases linearly with
increasing L and n;. On the other hand, w;, decreases

linearly for increasing A and n,, while showing two
regions on the wy, — n, curve characteristic by different
slopes.
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Figure 7. Output power plotted as a function of input power showing the optical bistability with ny=2 for (a) variation of L,
with 7,=0.005, n,=2x10"°um?*V?, A= 0.5um, and Ak=0.0005um™", (b) variation of n; with 7,=2x10"°um*/ V%, A=0.5um,
L=250pm, and Ak=0.0005um™", (c) variation of 1, with 7,=0.005, A=0.5pum, L=250pm, and Ak=0.0005um™" (d) variation
of Ak with n,=0.005, n,=2x10"um*/V?, A=0.5pm, and L=250pm.
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Figure 8. Hysteretic width wy, plotted as a function of (a) L, (b) ny, (c) A and (d) n,.
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5. Conclusion

We have solved the wave equation semi
analytically in a linear and nonlinear media with
sinusoidally modulated linear refractive index. The result
for linear cases demonstrates the existence of a
transmission gap and the variations of its width and center
position with respect to the system parameters. The
numerical solutions for nonlinear cases show the
appearance of transmission channels in the linear gap, and
increasing channels numbers as well as distortion of the
transmission gap at higher intensities. At higher input
intensities, the nonlinear property of the medium is shown
to induce hysteretic effect leading to multistable state
solution with intensity dependent characteristics.
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