
Kontribusi Fisika Indonesia 
Vol. 14 No.1, Januari 2003 

23 

The Effects of Sinusoidally Modulated Linear Refractive Index on  
The Wave Characteristics in Linear and Nonlinear Media 

Muksin1,2, R.E. Siregar1,3, A.A.Iskandar1#, and M.O. Tjia1* 
1Department of Physics, Institut Teknologi Bandung 

2Department of Physics, Universitas Syiah Kuala 
3Department of Physics, Universitas Padjajaran 

#iskandar@fi.itb.ac.id, *fismots@fi.itb.ac.id 

Abstract 

A numerical study has been carried out on the effects of shallow sinusoidal modulation on the refractive index of linear and 
nonlinear medium. The result on the linear system demonstrates generally the existence of a transmission band gap at a 
certain range of wavelength as usually revealed by analytic solution obtained with strictly nonreflecting boundary 
condition. It is shown in the numerical results that a more general boundary condition leads to similar transmission 
characteristics as the device length becomes much larger than the modulation period. A further description is given on the 
variation of gap characteristics with the system parameters. The extension by including the nonlinear term representing the 
intensity dependent refractive index (IDRI) effect gives rise to a new feature of the transmission gap, exhibiting imperfect 
reflection characterized by the appearance of transmission channels in the gap. As the input intensity increases, further 
modification of the gap feature occurs in conjunction with the appearance and growth of hysteretic effect featuring 
multistable states useful for logic functions. The variations of hysteretic characteristics with respect to the system 
parameters are also described. 
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1. Introduction 

The periodic modulation of refractive index of a 
dielectric medium along the wave propagation direction 
has been known to result in useful optical devices such as 
optical filter and reflector. Studies employing the slowly 
varying envelope (SVE) approximation and spatial 
averaging (SA) in the case of linear media with shallow 
modulation and nonreflecting boundary condition have 
led to an analytical solution of the Helmholtz equation, 
demonstrating the existence of a transmission band gap1). 
As this boundary condition is rarely realized in practice, it 
is interesting and useful to study the consequence of 
relaxing this boundary condition. For this purpose, a less 
restrictive boundary condition is introduced, and its effect 
on the transmission and band gap characteristics are 
examined numerically. 

In order to further explore potentially useful new 
functions of the system, we have extended the linear case 
by including a third order nonlinear term arising from the 
intensity dependent refractive index (IDRI) effect. 
Restricting our consideration to shallow modulation of 
both linear and nonlinear refractive index, and working 
within the SA and SVE approximations, two coupled 
differential equations have been derived along with two 
invariant quantities as reported previously by other 
researchers2). On the basis of these equations, we have 
further carried out numerical calculation using the more 
general boundary condition for the determination of the 
wave transmission characteristics of the periodic system 
with a number of different system parameters at various 
input powers. Additionally, we have also studied the 
hysteretic behavior of the transmitted power with respect 
to input power, which is expected to arise from the IDRI 

effect2). The bistable and multistable states associated 
with this hysteretic behavior are known to promise useful 
optical logic functions, and the variation of its 
characteristics is therefore examined with respect to 
variation of the system parameters. 

2. Basic Formulation 

The one-dimensional optical periodic system 
considered is shown in Figure  1, where the refractive 
indices in the entire region are specified as follows: 

n(z)  = n0 ; z ≤ 0  
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Figure 1. Description of the optical system with periodic 
modulation of the index in region II. 
 
The refractive indices are assumed to be uniform in the 
transversal directions. In eq. (1), n0 and n0’ for region I 
and region II are constant but not necessarily the same. 
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The refractive index in region II is assumed to vary 
sinusoidally along the z direction according to 

n(z) = n0 + n1 cos(Gz)  (2) 
where n1 cos(Gz)=∆n(z)  in eq. (1), and n1 is the depth of 
modulation (modulation index) and G is related to the 
period of modulation Λ by  

Λ
π

=
2G  (3) 

The depth of modulation n1 is taken to be much smaller 
than n0. 

The wave is assumed to propagate in the z 
direction and no boundary conditions are imposed in the x 
and y direction. Hence, the wave propagation in each 
region is governed by the one dimensional Helmholtz 
equation  
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2
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with )(zn
c

k ω
= , c denoting the velocity of light in 

vacuum and n(z) given by eqs.(1) and (2).  
Neglecting n1

2 with respect to n0
2 we may rewrite 

eq.(4) in the following form for region II  
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Assuming that the wave is incident from the left, the 
general solution of eq.(5) can be written as  

E(z)=A0 exp(ik0z) + B0 exp(-ik0z)  ;z ≤ 0 
E(z) = ( ) ( )zikzBzikzA 00  exp )( exp )( − +  ; 0 ≤ z ≤ L (6) 

E(z)=A’ exp(ik0
’z) ;z ≥ L 

where ko=(ω/c)n0. The solution given by eq.(6) satisfies 
the continuity condition at z=0 and z=L, with A(z) and 
B(z) representing respectively the forward and backward 
traveling waves amplitudes. In the following steps, the 
general solution given by eq. (6) is substituted into eq.(5), 
which is then reduced to 1st order differentia equation by 
applying the slowly varying envelope approximation |A”| 
« |2k0A’|  and  |B”| « |2k0B’|. Finally, employing spatial 
averaging at  2k0≅G, leads us  to two coupled 1st order 
differential equations for A(z) and B(z) respectively. 
These equations will be separately discussed in the 
following for the cases of linear and nonlinear refractive 
indices. 

3. The linear case 

The analytical result of this case has been worked 
out basically by Yeh for specific and restrictive boundary 
condition3), but may not be widely known to readers of 
this journal. It is therefore worthwhile to briefly 
summarized it here prior to discussions of the more 
general cases involving less restrictive and hence more 
practical boundary condition as well as the case involving 
optically nonlinear medium.  

For the linear case, n0 is independent of E, and the 
coupled differential equations resulted from the 
mathematical manipulations described above are given by  

kziezBizA
dz
d ∆κ−= )()(  (7) 

zkiezAizB
dz
d ∆−κ= )()(  (8) 

where the phase mismatch ∆k is  
∆k= 2k0 − G (9) 

and the coupling constant  

λ
π

=
ω

=κ 11  
2

n
c
n  (10) 

which denotes the coupling effect between the two 
counter propagating waves.  

By taking A(z)=|A(z)|exp(iφa) and 
B(z)=|B(z)|exp(iφb), then from the two equations one 
readily obtains two well known invariant quantities, Tc 
and Γ expressed by 

|A|2 − |B|2 = |Tc|2 (11) 
2

2
cos AkBA

κ
∆

+ψ=Γ  (12) 

where ψ=φa(z)− φb(z)− ∆kz. 
Upon application of nonreflecting boundary 

condition B(L)=0 as commonly adopted (albeit 
implicitly), one is led to an analytic solution of the form  

])2/(exp[ )0(
sinh )2/(  cosh 

)( sinh )(

])2/(exp[ )0(
sinh )2/(  cosh 

)( sinh )2/()( cosh )(

zkiA
sLkisLs

zLsizB

zkiA
sLkisLs

zLskizLsszA

∆−
∆+

−κ−
=

∆
∆+

−∆+−
=

 (13) 

where s = [κ2 – (∆k/2)2]1/2, which leads to s=κ in the case 
of perfect matching. Further, the analytic expression for 
the transmittance defined by T=|A(L)|2 / |A(0)|2 is given by 

T= 1 − 
sLksLs

sL
2222

22

sinh )2/( cosh 
sinh 

∆+
κ  (14) 

The existence of a transmission gap is clearly indicated by 
T=0 at s=0. It is rather straight forward to derive on the 
basis of eq.(14) and eq.(10) an expression for the gap as 
follows 

∆λ=2n1Λ (15) 
which is centered at  

Λ=λ 00 2n  (16) 

It is clear from eq.(15) that the gap width increases 
linearly with n1 and Λ separately, while the gap center 
varies linearly with Λ only as indicated by eq.(16). 

It is noteworthy that instead of employing the 
B(L)=0 boundary condition, implying the restriction 
∆n(z)=0 at z=L, we shall henceforth consider a boundary 
condition specified by the more general relationship  

B(L)=r(L)A(L) (17) 
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where r(L) is the local Fresnel reflection coefficient at 
z=L, which is expressed by 

)cos(2
)cos()(

10

1

GLnn
GLnLr

+
=  (18) 

for the case of 00 nn =′ . As a consequence, analytic 
expressions for A(z), B(z) and T given respectively by 
eqs.(13) and (14) do not hold any longer in this case. 
Numerical method must be employed in solving for A(z) 

and B(z) directly from eq.(7) and (8). The resulted 
solution for A(z) and B(z) in region II are illustrated in 
Figure  2 for the case of different ∆k values at L=300µm. 
The amplitudes A(z) and B(z) are shown to decay along z 
direction with B=0 at L=300µm, indicating that the wave 
is totally reflected at L=300µm for the ∆k and Λ=0.5µm 
considered. However, for the special case satisfying 
cos(GL)=0 or L=(2m+1)Λ/4 where m=0, 1, 2 etc., we 
have  r=0 at z=L. In this case, the nonreflecting  boundary 
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Figure 2. Graphical representations for the amplitudes and phases of A(z) and B(z) with n0=2, n1=0.004, Λ=0.5µm, 
L=300µm and |A(L)|=1V/µm at (a) ∆k=0, (b) ∆k=0.12µm-1, and  (c) ∆k=0.15µm-1. 
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Figure 3. Transmission characteristics exhibiting a band gap obtained numerically for n0=2 with (a) n1=0.03, Λ=0.5µm 
L=300µm. (b) n1=0.03, Λ=0.5µm, L=50µm. (c) n1=0.01, Λ=0.5µm, L=300µm and (d) n1=0.01, Λ=0.25µm, L=300µm. 
 

condition is recovered. It is not difficult to convince 
oneself that this condition is almost automatically 
satisfied as long as L»Λ or m»1 as demonstrated 
numerically in this particular case. It is important to point 
out from Figures 2(a) and (b) that the rapidly decaying 
|A(z)| and |B(z)| curves coincide perfectly in the case 
∆k=0, while |B(z)| curve lies closely below |A(z)| curve 
exhibiting non monotonic variation for ∆k≠0 (around the 
gap edge). At even larger value of ∆k (further away from 
the gap center), as shown in Figure  2(c), the curves 
display non decaying oscillation with the |B(z)| curve 
lying far below the |A(z)| curves. The corresponding phase  
function in the first two cases show similar pattern for 
|A(z)| and |B(z)|, but differ considerably in the third cases.  

The transmittance as a function of ∆k or λ is 
plotted in Figure  3 for different L, Λ, and n1. While the 
existence of a band gap is clearly visible in all cases, a 
comparison between Figure  3(a) and 3(b) indicates that 
the gap becomes more sharply defined with near perfect 
reflection for large L. Comparison between Figure  3(a) 
and 3(c) demonstrates that a smaller modulation depth 
leads to a narrower band gap. It is also clear from 
comparing Figure 3(c) with Figure 3(d) that a smaller Λ 

results in a shift of the gap center position to smaller λ0 as 
well as a narrower gap. These variations of gap 
characteristics are consistent with the analytic result 
described earlier. For the more general cases of finite Λ/L, 
our numerical formulation is expected to offer the desired 
solution unavailable from the more restrictive analytic 
formulation. 

4. The case with IDRI effect  

By taking into account the IDRI effect of the 
nonlinear medium in region II, the modulated refractive 
index becomes  

n(z) =no+n2|E(z)|2+n1 cos(Gz) (19) 
Applying the same procedure as employed in the 
preceding section, we arrive at the following coupled 
equations: 

( ) )(|)(|2|)(|)()( 22 zAzBzAezB
dz

zdAi kzi +α+κ= ∆  (20) 

( ) )(|)(||)(|2)()( 22 zBzBzAezA
dz

zdBi kzi +α+κ=− ∆−  (21) 
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where ∆k and κ are given by the same expression in eq. 
(9) and (10) respectively, and the additional parameter is 
defined by  

λ
π

=
ω

=α 22 2 n
c
n   (22) 

which is introduced by the nonlinear effect. The two 
invariant quantities in this case are given respectively by  

|A|2 − |B|2 = |Tc|2 (23) 
 
which is identical in form with eq. (11) and 

22
1 22

3cos AkBBA 


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κ
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+
κ
α

+ψ=Γ  (24) 

which has the additional term coming from the obvious 
contribution of nonlinear effect represented by α. The 
numerical solutions of eq. (20) and (21) and the related 
transmission characteristics will be described and 
discussed separately in the following. 

4.1 Behaviors A(z) and B(z)  

The calculated results for A(z) and B(z) are 
presented  in  Figure  4 for different  boundary  conditions 
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Figure 4. Graphical representations for |A(z)|, |B(z)| and φa(z), φb(z) for n0=2, n1=0.03, n2=2x10−6µm2/V2, Λ=0.5µm, ∆k=0, 
L=300µm for (a) |A(L)|=0.15V/µm, (b) |A(L)|=0.5V/µm and (c) |A(L)|=5V/µm. 
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specified by the coefficient of reflection  r obtained by 
assuming B(L)«A(L). This assumption is plausibly 
justified for the case of shallow grating (n1«n0) and weak 
IDRI effect (n2«n1) considered here. The resulted 
expression for r is given as follows 

2
210

2
21

)()cos(2

)()cos(

LAnGLnn

LAnGLn
r

++

+
=  (25) 

The resulted solution of |A(z)| and |B(z)| for ∆k=0 and 
L=300µm at different field |A(L)| are plotted in Figure 
4(a) and Figure  4(b). It is interesting to note that at a 
smaller value of |A(L)|, the two curves coalesce perfectly. 
Both the amplitude and the phase display different 
characteristics from those described in Figure 2. At an 
intermediate |A(L)|, the phases becomes asymmetrically 
modified, while the field profile remain practically the 
same. When |A(L)| is further increased, |B(z)| becomes 
smaller than |A(z)|. It is found that this trend continues in 
the same direction displaying more complicated variations 
with z when |A(L)| becomes larger. It is also interesting to 
point out, as will be shown later, that the transmittance 
characteristics are also clearly affected by the presence of 
nonlinear property as indicated by their changes with 
respect to |A(L)|. 

4.2 Transmittance characteristics 

The transmittance curves corresponding to the 
cases considered in Figure 4 are described in Figure  5. 
Although the basic feature of a transmission band gap 
remains visible in those Figure ures, it is also obvious that 
the gap is now split by the presence of transmission 
channel in the gap, indicating imperfect reflection in the 
region. It is shown that for |A(L)|=0.15V/µm, the original 
linear gap admits a single transmission channel at the gap 
center. For |A(L)|=0.5V/µm, two separate transmission 
channels are allowed in the band gap. Increasing |A(L)| to 
6V/µm leads to visible distortion or asymmetry of the gap 
structure. It is found that the asymmetry is due to the 
different values of |A(L)| for the same ∆k of opposite 
signs. This difference or distortion which increases with 
|A(L)| is suspected to have it origin in the nonlinear IDRI 
effect. It must be added that this enhanced distortion is 
also accompanied with the appearance of additional 
transmission channels. 
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Figure 5. Transmission characteristics of nonlinear system at (a) |A(L)|=0.15V/µm, (b) |A(L)|=0.5V/µm, and (c) 
|A(L)|=6V/µm showing variation of nonlinearity induces transmission channels in the linear gap due to different input 
intensities. 
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4.3 The Optical Multistable and Bistable Feature 

For a further study of nonlinear property arising 
from the IDRI effect, we consider the relationship 
between the output intensity and the corresponding input 
intensity. The result of our numerical calculation is shown 
in Figure 6 which exhibits hysteretic characteristic when 
the input intensity rises beyond a certain value (|A(0)| is 

limited to be around 30V/µm by our assumption leading 
to eq.(25)) as shown in Figure 6(b) and (c). This feature 
results in the optical bistable states, which seems to 
“proliferate” at higher input intensity. The hysteretic 
effect can be characterized by the hysteresis width (wh) 
and the corresponding turning point Ih indicated in Figure 
6(b).  
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Figure 6. The output intensities |A(L)|2  are plotted as a function of input intensities |A(0)|2 for n0=2, n1=0.005, L=300µm, 
n2=2x10−6µm2/V2, and ∆k=0.0005µm−1 showing (a) nonhysteretic pattern for Λ=0.65µm, (b) optical bistable pattern for 
Λ=0.5µm and (c) optical multistable pattern for Λ=0.25µm.  
 
 

The hysteretic behavior shown in Figure 7 varies 
with the changes of L, n1, n2 and ∆k. These variations in 
term of the hysteretic parameters are summarized in 
Figure  8. The value of wh increases linearly with 
increasing L and n1. On the other hand, wh decreases 

linearly for increasing Λ and n2, while showing two 
regions on the wh – n2 curve characteristic by different 
slopes. 
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Figure  7. Output power plotted as a function of input power showing the optical bistability with n0=2 for (a) variation of L, 
with n1=0.005, n2=2x10−6µm2/V2, Λ= 0.5µm, and ∆k=0.0005µm−1, (b) variation of n1 with n2=2x10−6µm2/V2, Λ=0.5µm, 
L=250µm, and ∆k=0.0005µm−1, (c) variation of n2 with n1=0.005, Λ=0.5µm, L=250µm, and ∆k=0.0005µm−1 (d) variation 
of ∆k with n1=0.005, n2=2x10−6µm2/V2, Λ=0.5µm, and L=250µm. 
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Figure 8. Hysteretic width wh plotted as a function of (a) L,  (b) n1, (c) Λ and (d) n2. 
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5. Conclusion 

We have solved the wave equation semi 
analytically in a linear and nonlinear media with 
sinusoidally modulated linear refractive index. The result 
for linear cases demonstrates the existence of a 
transmission gap and the variations of its width and center 
position with respect to the system parameters. The 
numerical solutions for nonlinear cases show the 
appearance of transmission channels in the linear gap, and 
increasing channels numbers as well as distortion of the 
transmission gap at higher intensities. At higher input 
intensities, the nonlinear property of the medium is shown 
to induce hysteretic effect leading to multistable state 
solution with intensity dependent characteristics.  
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