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Abstract 

Indonesia, a country with 172 volcanoes and second after Japan for the most eruption events, should monitor and predict 

the volcano eruption to prevent the effect of this natural disaster. Therefore, we have developed a 4-wheeled mobile robot 

equipped with monitoring sensors and a Logitech camera for this purpose. The robot should have the ability to detect 

objects in this extreme environment to avoid collision while moving and monitoring the volcano’s physical parameters. It 

has been designed a deep machine learning of YOLOv5s algorithm for two objects mostly found at volcanoes such as trees 

and stones. After the training steps (object identification; dataset downloading (Google Chrome Extension and Open 

Images v6); image labeling (LabeImg); augmentation process (blur and rotation)) had been carried out, the images of the 

object then trained in three model variation which resulted in: mAP_0.5 = 51.9%, mAP_0.5:0.95 = 28.6%, 58% of precision 

and 50% recall with 12 minutes and 33 seconds of training time for the first model (batch=16 and epochs=100); mAP_0.5 

= 59.7%, mAP_0.5:0.95 = 36.3%, 74% of precision and 54% recall with 36 minutes and 4 seconds of training time for the 

second model (batch=16 and epochs=300); mAP_0.5 = 59.9%, mAP_0.5:0.95 = 37.6%, 80% of precision and 55% recall 

with one hour and 25 seconds of training time for the last one (batch=16 and epochs=500) as the best model of these 

variations. Furthermore, these results were displayed for all test images for the best model.  
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INTRODUCTION1* 
 

Indonesia which has 172 volcanoes and is the 

second most eruption events after Japan, should 

monitor and predict the volcano eruption to prevent 

the effect of this natural disaster. Therefore, we have 

developed a 4-wheeled mobile robot equipped with 

monitoring sensors and a Logitech camera for this 

purpose in a volcano monitoring system called 

MONICA [1-10]. The robot should have the ability 

to detect objects in this extreme environment to avoid 

collision while moving and monitoring the volcano’s 

physical parameters [11-15]. We have applied a 

YOLOv5s (the latest and the best version of YOLO 

[16,17] algorithm (open source) for this purpose by 

training 4 objects: persons, trees, stones and stairs. 

The best result for this training was batch 16 and 

epoch 500. Therefore, in this research, we have 

trained the datasets of two main objects usually found 

 
1* Corresponding author. 

in volcanoes (trees and stones) [18] in batch 16 and 

different epochs (100, 300 and 500 [10]).  

The choice of YOLOv5s for object detection is 

driven by several compelling reasons. Its high frame 

rate makes it ideal for real-time applications where 

rapid detection is crucial [19]. The algorithm's 

advanced detection capabilities ensure high 

precision, reducing false positives and enhancing the 

reliability of navigation and surveillance systems 

[19]. The adaptability of YOLOv5s across various 

domains—from robotics to environmental 

monitoring—demonstrates its robustness and 

suitability for diverse use cases [13]. Additionally, 

YOLOv5s's efficiency on low-power devices, such as 

the Raspberry Pi, allows for its deployment in 

resource-constrained environments, making it a 

practical choice for edge computing applications 

[20]. Therefore, YOLOv5s stands out due to its 

advanced detection capabilities, making it the 

preferred choice for applications demanding both 
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speed and accuracy. Its integration into diverse 

systems—from mobile robots to smart 

surveillance—highlights its transformative impact on 

real-time object detection technologies. 

Some works have been reported for YOLO 

application. Conrad and DeSouza's work on mobile 

robot navigation relied on a modified Expectation 

Maximization (EM) algorithm to segment object 

images from the ground plane, highlighting the 

importance of accurate object classification in 

navigation tasks such as obstacle avoidance and path 

planning [21]. This research established a foundation 

for the need to improve classification methods, which 

YOLOv5s addresses with its enhanced detection 

capabilities. 

Moreover, advancements in Unmanned 

Surface Vehicles (USVs) have been documented by 

Garcia et al., emphasizing the critical role of obstacle 

avoidance in achieving optimal performance in 

environmental missions [13]. This research 

underscores the importance of robust object detection 

algorithms like YOLOv5s in enhancing navigation 

capabilities in various environments. 

Additionally, Adam Gunnarsson's 2019 study 

compared object detection methods, including 

SSDLite and YOLOv3-tiny, using the COCO dataset 

to assess the feasibility of real-time object detection 

on a Raspberry Pi [20]. This benchmark study 

provided insights into the performance metrics of 

different algorithms, demonstrating the need for an 

improved solution like YOLOv5s that offers both 

high speed and accuracy. 

Layek et al.'s development of a cloud-based 

smart surveillance system using Raspberry Pi and 

YOLO-based object recognition also serves as a 

benchmark [22]. This study showcased the 

integration of basic motion analysis on edge devices 

and detailed object detection in the cloud, 

highlighting the practical applications and benefits of 

using advanced detection algorithms such as 

YOLOv5s. 

 

METHOD 
 

Labelling 

Some robots have been developed to have 

obstacle avoidance mechanisms for static objects 

such as persons or dynamical objects such as trees, 

light poles, trash cans, stones, etc. [23] in an urban 

area. Meanwhile, the robot in this research should 

have the ability to detect the object in front of it, to 

avoid obstacles in the volcano area especially when 

the volcano erupts. Therefore, it should be only trees 

and stones found in the area to be avoided by the 

robot, not including humans as mentioned in our 

previous research [10]. 

Thereafter, the object images were set as the 

dataset for the training process in YOLOv5s – a better 

algorithm than Fast R-CNN in background patch 

error, accuracy and ease to use in low-specification 

hardware [24-26].  Labeling as the first process (Fig. 

1) where the images were highlighted by adding a 

label and object bounding box segmented [27] was 

carried out by LabelImg [10,28] (Fig. 2).  The 

datasets were higher resolution images than our 

previous work to improve the quality of the training 

result [10].  

 
Fig. 1.  Flowchart of the experimental design. 

 

 
Fig. 2.  Labelling of tree and stone in LabelImg. 

Augmentation 

Model performance could be improved by 

augmenting the dataset to produce a real dataset by 

flipping, rotating, cropping, adding noise, occluding 

portions of the image, etc. [29]. Hence, the model 

could face more situations by learning more datasets 

produced during augmentation. In this research, 

datasets were blurred and rotated for the robot to 

detect the object in a foggy environment and move on 

uneven terrain [10].    
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Training 

The dataset was online trained in an open-

source platform Google Colab using Phyton versions 

2 and 3, with no installation and configuration, free 

access to GPU and TPU (for a faster training process) 

and an environment for Jupyter Notebook [10]. After 

the data had been divided into 3 parts: 70% for 

training, 20% for validation and 10% for testing [30], 

the yolo5 model (including yolov5s.yaml, 

yolov5m.yaml, yolov5l.yaml, yolov5x.yaml, etc.), 

utils (for analysis and graphic plotting), weights were 

cloned to YOLOv5 repository in PyTorch. Some 

dependencies for programming the (unified) 

detection [31] training and inference command 

environment were installed before the dataset was 

converted into .txt of YOLOv5 PyTorch. 

Furthermore, the data were trained after the 

YOLOv5s architecture had been configured [10]. 

The results are presented in accuracy metrics graphs 

(mean Average Precision for 0.5 Intersection over 

Union (IoU) of the neuron network cells, between 0.5 

and 0.95 of IoU; precision and recall) and loss 

function (associated with IoU loss [32-34] graphs 

(bounding box, classification and object losses) [10]. 

Some trained samples are also presented in this 

paper: the result of the truth data to show the real 

object boundary, augmented images and display 

interface of tested images. 

Average Precision (AP) is a common metric 

for the accuracy of the detection process by 

computing the precision average of the recall number 

between 0 to 1 [35]. 

𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0
    (1) 

where p(r) is the precision as the function of the 

recall. Precision quantifies the training accuracy (in 

percent) by 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (2) 

where TP (True Positive) is the result of the true 

positive class prediction of the model and FP (False 

Positive) is the failed one. Meanwhile, recall is a 

parameter of how well the model finds all the positive 

value data 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

where FN (False Negative) shows how the model 

fails to detect the negative class. 

Furthermore, the loss function without a sub-

optimal solution is performed with the SGD 

(Stochastic Gradient Descent) method [36, 37] for its 

weight (w) and bias (b) 

𝑤 ≔ 𝑤 − 𝛼
𝜕

𝜕𝑤
𝐽(𝑤)   (4) 

and 

𝑏 ≔ 𝑏 − 𝛼
𝜕

𝜕𝑏
𝐽(𝑏)   (5) 

where α is the learning rate to control the iteration 

and  

𝐽(𝑤, 𝑏) = −
1

𝑚
∑

1

2
(�̂� − 𝑦)2𝑚

𝑖=1   (6) 

where i is single training data,  m is the number of the 

data, �̂� is different samples in the dataset, and y is the 

label of data [35]. Moreover, the Sigmoid (a non-

linear active function) and Binary Cross-Entropy 

(BCE) class were combined in the same layer of 

YOLOv5s PyTorch for numerical stability reasons.  

 

 

RESULTS AND DISCUSSION 

Model 1 (batch=16 and epochs=100) 

The actual data of this model in 753 seconds 

are presented in thin graphs while the mean values 

(on a bigger scale) [10] are in the smoothed thick 

graphs [10] (Fig. 3). 

The Mean Average Precision of mAP_0.5 (0.5 

Intersection of Union) after 500 times of training 

reaches 51,9% (Fig. 3(A)) training quality, while 

mAP_0.5:0.95 reaches 28.6% (Fig. 3(B)). These 

results are fit for YOLOv5s compared with the pre-

trained checkpoint table of the COCO (Microsoft 

Common Object in Context – dataset which is usually 

used for the YOLO dataset (the average of some 

IoUs) with 55.4% mAP_.5 and 36.7% mAP_.5:.95 

and Bochkovskiy statement for the smallest YOLO 

version (YOLOv5s) for mAP_0.5 (between 26%-

36%) [38]. Moreover, this model's precision 

fluctuates and progressively reaches 8% (Fig. 3(C)) 

as the recall shows 50% training quality of 14.8 MB 

last and best weights. 

 

Fig. 3.  The accuracy metrics of model 1: mAP_0.5 (A), 

mAP_0.5:0.95 (B), precession (C), and recall (D). 

The losses for the bounding box, classification 

and object tend to zero in this model (Fig. 4 (A), (B) 

and (C)). Therefore, this model has a bigger 

probability of true events for each increasing epoch. 
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Furthermore, the labeling process was carried 

out with the numbers 0 for stones and 1 for trees the 

objects usually found at volcanoes. All the objects 

that could be precisely detected by the model 

(indicated by the truth data) are shown in Fig 5: a 

single stone (Fig. A, E, F, H, K and M), a bunch of 

rocks (Fig. D, I and N), a single tree (C, G and P) and 

a group of trees (C, G and P). 

 
Fig. 4.  The loss functions of model 1: bounding box loss (A), 

classification loss (B), and object loss (C). 

 
Fig. 5.  The result of truth data for model 1: a single stone (A, 

E, F, H, K and M), a bunch of stones (D, I and M), a single tree 

(C, G and P), and a group of trees (B, J and O). 

Furthermore, During the training data were 

augmented by rotating and blurring the pictures to 

know the reliability of the model (indicated by its 

weight) to detect the objects in such real volcano 

situations. In these situations, all objects could also 

be detected perfectly in Fig. 6.: a single tree (C, E, 

and I), a single stone (B, F, G, H, and N) and a 

combination of trees and stones (A, D, J, K, L, M, O 

and P). 

However, the display interfaces show different 

results (Fig. 7), where objects failed to be detected. 

Some stones failed to be detected in Fig. C, while 

only one tree could be detected in Fig. D indicated by 

a no-precise-position of the purple bounding box as 

in Fig. A where a stone bounded by a less-precise 

green box. Moreover, a tree could not be detected 

entirely in Fig. B. These results were expected 

because of the dataset’s uneven distribution and the 

quality of the low-resolution pictures [10]. 

 
Fig. 6.  Augmented samples for model 1: a single tree (C, E, 

and I), a single stone (B, F, G, H, and N) and a combination of 

trees and stones (A, D, J, K, L, M, O and P). 

 
Fig. 7.  The display interface of test images for model 1: a 

group of trees (D), a single stone (A), a bunch of stones (C) and 

a single tree (B). 
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Model 2 (batch=16 and epochs=300) 

In this model, datasets were trained in the same 

batch, last and best weights yet three times epoch as 

Ultralytics default experiment for COCO dataset for 

36 minutes and 4 seconds. The results are shown in 

Fig. 8. After 300 times of training, the mAP_0.5 of 

mean Average Precision (mAP) reaches 59,7% (Fig. 

A) and mAP_0.5:0.95 reaches 36.3%. These results 

are also consistent with Bochkovskiy’s for 

mAP_0.5:0.95. This model has also been estimated 

by a pre-trained checkpoint table from Ultralytics 

using COCO datasets, which resulted in 55.4% of 

mAP_.5 YOLOv5s and 36.7% of mAP_.5:.95. There 

were 4,3% higher quality of the detection model 

using better quality images dataset [10]. Meanwhile, 

the precision (reaches 74% in Fig. C) and recall 

(reaches 54% in Fig. D) rise progressively in their 

epochs. The less precise bounding boxes could be 

one of the reasons for this fluctuating cycle. 

These results are also confirmed by the loss 

graphs in Fig. 9 where all graphs (bounding box loss 

(A), classification loss (B), and object loss (C)) reach 

zero loss. The graphs describe how close the training 

result is to the true probability for each epoch 

increment. The less the loss the more the prediction 

represents the truth. 

 
Fig. 8.  The accuracy metrics of model 2: mAP_0.5 (A), 

mAP_0.5:0.95 (B), precession (C), and recall (D). 

 
Fig. 9.  The loss functions of model 2: bounding box loss (A), 

classification loss (B), and object loss (C). 

Furthermore, the objects are successfully 

detected by this model (Fig.10): a single stone (C, E, 

I, M, N and P), a bunch of stones (A, F and L), a 

single tree (D, H, K and O), and a group of trees (B, 

G and J). 

Moreover, the model could detect the objects 

when the dataset was also varied with two different 

augmentations (rotation and blur) (Fig. 11): a single 

tree (A, K and M), a single stone (F, J, N, O and P) 

and combination of trees and stones (B, C, D, E, G, 

H, I, and L). 

Hereinafter, the display interface of the model 

shows that more objects could be detected than in the 

first model (Fig.12): a group of trees (D), a single 

stone (A), a bunch of stones (C) and a single tree (B). 

Some stones failed to be detected because of the 

quality of the images [10] and potentially because all 

images were converted into .jpg. 

 
Fig. 10.  The result of truth data for model 2: a single stone (C, 

E, I, M, N and P), a bunch of stones (A, F and L), a single tree 

(D, H, K and O), and a group of trees (B, G and J). 
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Model 3 (batch=16 and epochs=500) 

The last model (batch=16 and epochs=500) 

was trained in one hour and 25 seconds and has the 

same last and best weight as the first and second 

models (14.8 MB). The mean Average Precisions are 

higher than the previous finding: 59,9% for mAP_0.5 

and 37.6% for mAP_0.5:0.95 (Fig. 13 A and B). 

These results were also higher than the COCO dataset 

pre-trained checkpoint for the same model with 

55.4% mAP_.5 YOLOv5s and 36.7% mAP_.5:.95.  

The precision (reaches 80%) and recall (reaches 

55%) are also progressively as the previous results 

(Fig. C and D). therefore, the more epoch the higher 

the precision and recall. 
 

 
Fig. 11.  The augmented samples for model 3: a single tree (A, 

K and M), a single stone (F, J, N, O and P) and a combination 

of trees and stones (B, C, D, E, G, H, I, and L). 

 
Fig. 12.  The display interface of test images for model 2: a 

group of trees (D), a single stone (A), a bunch of stones (C) and 

a single tree (B). 

The last loss graphs show the best result among 

the three variance models (Fig. 14). The bounding 

box reaches 0.029 (Fig. 14 A), classification loss 

reaches 0.0005 (Fig. 14 B), while object loss reaches 

0.024 loss (Fig. 14 C). 

In this training, the model could detect all the 

objects precisely as well as the previous ones, 

indicated by the result of truth data in Fig 15: a single 

stone (C, E, I, M, N and P), a bunch of stones (A, F 

and L), a single tree (D, H, K and O), and a group of 

trees (B, G and J). 
 

 
Fig. 13.  The accuracy metrics of model 3: mAP_0.5 (A), 

mAP_0.5:0.95 (B), precession (C), and recall (D). 

Furthermore, after the datasets were 

augmented by rotating and blurring, the result for the 

last model shows that the object could be detected 

and bounded by the box perfectly (Fig. 16) as the 

previous ones: a single tree (A, K and M), a single 

stone (F, J, N, O and P) and combination of trees and 

stones (B, C, D, E, G, H, I, and L). 

 

 
 
Fig. 14.  The loss functions of model 3: bounding box loss (A), 
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classification loss (B), and object loss (C). 

However, the display interface shows a 

different result for the tree(s), such as a single tree 

that could not be detected (Fig. 17 B) and a less 

precise bounding box for a group of trees (Fig. 17 D), 

while a single stone and a bunch of stones are 

successfully detected and bounded by a precise box 

(Fig 17 A and C). 
 

 
Fig. 15.  The result of truth data for model 3: a single stone (C, 

E, I, M, N and P), a bunch of stones (A, F and L), a single tree 

(D, H, K and O), and a group of trees (B, G and J). 

 
Fig. 16.  The augmented samples for model 2: a single tree (A, 

K and M), a single stone (F, J, N, O and P) and a combination 

of trees and stones (B, C, D, E, G, H, I, and L). 

 
Fig. 17.  The display interface of test images for model 3: a 

group of trees (D), a single stone (A), a bunch of stones (C) and 

a single tree (B). 

CONCLUSION 
 

A deep machine learning suitable for mini-

hardware such as a microcontroller called YOLOv5s 

has been applied for object detection in a 4-wheeled 

mobile robot for the volcano monitoring system. The 

training process was carried out in three different 

epochs (100, 300 and 500) for the same batch (16). 

The more epoch, the higher the mean Average 

Precision (51.9% to 59.9% for 0.5 mAP and 28.6% 

to 37.6% for 0.5:0.95 mAP), precision (58% to 80%) 

and recall (50% to 55%); and the lower the losses 

(bounding box’s (0.0046 to 0.029), classification’s 

(0.0034 to 0.0005) and object’s (0.039 to 0.024). 

Therefore, the last variant shows the best result for 

accuracy metrics and loss function. However, the 

second variant shows the optimum result indicated by 

no-fail object detection and precise bounding boxes. 

Accuracy metrics could be upgraded (5-10% 

improvement in mAP, as suggested by comparative 

research, a concrete and achievable target for 

enhancing the performance of YOLOv5 in computer 

vision applications) by improving performance with 

data: getting more data, inventing more data, 

rescaling data, transforming data, featuring selection 

and using higher image resolution data. Moreover, 

the part of the tree object could be detailed to get a 

more specific dataset. 
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