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Abstract 

Fission Yield calculation techniques can be completed in various ways. In this work, other calculation techniques will be 

described. Namely, a semi-empirical technique that utilizes random numbers. This semi-empirical method can produce 

fitting parameters to obtain other physical quantities. Because it uses a random number initiator, computations can be 

completed in parallel. Therefore, the computation time is shorter. This paper will show in sequence the steps of this 

technique. The calculation begins by assigning a value to the incident energy and random position of the nucleons, and 

then ends after fission products occur. This paper only describes the process of calculating the Fission Yield for several U 

isotopes.  
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INTRODUCTION1* 
 

It is well known that fission yield data (FYD) 

are indispensable for some industries related to 

nuclear technology such as nuclear reactors and fuel 

cycle technology.  In nuclear reactors, FYD is 

widely used to calculate fuel utilization, such as 

decay heat, dosimetry, reactor safety, burn-up, waste 

treatment, and so forth. The FYD mentioned in this 

paper is actually a secondary product of the fission 

process. This is because neutrons as primary 

products undergo evaporation in a very short range 

of time. 

Since the discovery of fission reactions and 

their use in nuclear technology has emerged a large 

number of studies have been and are being carried 

out. One of the most important is research on fission 

yield products (FYP) in 1974. In that year, 

Moriyama and Ohnishi tried to approach the theory 

through a semi-empirical model [1]. As well as 

Katakura [2] he also did the same work with the 

semi-empirical approach. Based on the FYD 

experimental data, the Gaussian function was 

chosen to represent the data. For this purpose, 

Katakura had chosen five Gaussian functions. The 
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parameters contained in the function were taken 

from the measurement results unless there was a 

parameter quoted from the work done by Wahl [3].  

In another report [4], Wahl did a more complete 

elaboration of the calculation of physical quantities 

in the FYD systematic process. Danu [5], did the 

same thing as Moriyama in 2018 by using five 

Gaussian functions. He used experimental data and 

calculations by GEF [6] to get parameters in the 

Gaussian distribution function. In his paper, he 

considers that the isotopic yield followed a Gaussian 

distribution. The evidence that shows Gaussian-like 

functions are used as a function in semi-empirical 

methods can be seen in the work done by Lee [7].  

Thus, FYD research that using the semi-empirical 

method can be said as continuing for more than 44 

years, hence the method can be further developed.  

Semi-Empirical Random Number Method for 

Fission Process (SERNM) is a semi-empirical 

method based on random numbers. This technique 

was developed based on the results of research 

conducted by Rizal [8-10].  According to Rizal, 

Fission reactions can be viewed as a stochastic 

process because the fission products cannot be 

determined with certainty only by one fission 

reaction. Based on this, many fission reactions are 

needed to find out. The recapitulation of all possible 

fission products will then form a value that can 

determine the probability of the emergence of a 
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particular type of fission product. Unlike the model 

proposed by Brosa [11], the determination of this 

fission product does not use a potential barrier. So it 

has not been able to determine fission products from 

the results of fission. This condition is one of the 

weaknesses of SERNM.  

 

 

THE METHOD  
 

 

SERNM adopts the nucleus shape as in the 

liquid drop model. This technique divides the 

nucleus into two main parts, namely the left and the 

right. This division is a sign of the part that will 

experience fission. Furthermore, the generation of 

random numbers becomes the beginning of the 

simulation of fission events. The key to the success 

of SERNM is the use of random numbers, where 

this random number will determine the most likely 

nucleon distribution function. This distribution 

function can describe how nucleons are distributed 

in the nucleus when a fission event occurs. In order 

for the nucleon distribution to be more realistic, the 

chosen distribution function can follow the form of 

the nucleon distribution obtained from several 

sufficient references.  

The nucleon distribution function according 

to Hofstadter [12] is in the form 𝜌(𝑟) =

𝜌0 (1 +
𝑎𝑟2

𝑎0
2 ) 𝑒𝑥𝑝 (−

𝑟2

𝑎0
2). The expression 

𝑒𝑥𝑝 (−
𝑟2

𝑎0
2) has a Gaussian form. Wang [13] in his 

works states that the density of nucleons 120Sn from 

experimental results can be approached by the sum 

of functions similar to Hofstadter. The next 

consideration was the work of Haddad [14].  He 

gave the result that the density of the charge on the 

nuclide narrowed in its centre. 

The figure below shows an illustration of 

the relationship between nucleons and the intended 

Gaussian distribution function. This Gaussian 

function gives the probability that the nucleon lies 

around its mean position. 

 
Fig. 1.  Illustration of two Gaussian distribution functions 

representing the positions of two nucleons. 

𝜆 in Figure 1 shows the most likely nucleon 

position, while 𝜎 represents the width of the 

distribution function. The smaller the 𝜎 means the 

more the nucleons are bounded around the 𝜆 value. 

𝑊 is the distance between the two 𝜆. The 

probability of the location of each nucleon is 

described in the following function.  

 

𝑓(𝑧, 𝜆𝑖) = 𝐵𝑖𝑒𝑥𝑝 (
−(𝑧−𝜆𝑖)2

𝜎𝑖
)  (1) 

 

With the explanation as follows: The scattered 

nucleons in the nucleus space are isotropic in the 

𝑥 − 𝑦 plane. Nucleons are only scattered following 

the 𝑧 variable. 𝑧 is a variable on the 𝑧-axis (see 

Figure 2), 𝜆 is a position where it has the greatest 

probability of finding the nucleon, and the standard 

deviation 𝜎 whereas 𝑖 states the 𝑖 − 𝑡ℎ nucleon. 

Selection of the 𝑧-axis follows the illustration given 

by Nix [15]. 

 
Fig. 2.  Illustration of nuclear deformation in x-y-z space. 

 

In SERNM, random numbers are used for two 

purposes. The first is to determine the ratio between 

the mean distance of nucleons on the right and the 

left. The second role is to determine the proportion 

between the width of the distribution function of the 

left and right nucleons. The following equation 

shows the use of these random numbers.  

 

𝜉𝑊 =
𝑊𝑅

𝑊𝐿
   (2a) 

 

𝜉𝜎 =
𝜎𝑅

𝑚𝑎𝑥

𝜎𝐿
𝑚𝑎𝑥   (2b) 

 

For the distribution of the whole nucleon in nuclide 

that has mass number A, a superposition of equation 

1 is applied to the whole nucleon in the nucleus.  

 

𝐹𝑗(𝑧) = ∑ 𝐵𝑖𝑒𝑥𝑝 (
−(𝑧−𝜆𝑖𝑗)

2

𝜎𝑖𝑗
)𝐴

𝑖=1   (3) 
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Equation 3 above will produce a distribution 

function that resembles the Fermi-Dirac distribution 

function. This equation is then called the Fermi-

Dirac-like distribution function. With 𝐵𝑖 is the 

normalization constant and, 

 

𝜆𝑖𝑗 = {𝐶𝑗 − 𝑊𝑗, … 𝐶𝑗 − 𝑊𝑗 + 𝑘𝐷𝑗
𝜆};    

𝑘 = 1, … , 𝐴 − 1   (4) 

 

𝐷𝑗
𝜆 = 2

𝑊𝑗

𝐴−1
     (5) 

 

𝐶𝑗 represents the centre of the future candidate 

fission nuclide with 𝑗 = {𝐿, 𝑅}  and 𝐿 mean the left 

and 𝑅 right parts of the candidates for fission 

nuclides. 𝑊𝑗 is related to the total width of the 

distance between nucleons and 𝐷𝑗
𝜆 denotes the 

average distance between nucleons. The width of 

the distribution function per nucleon 𝜎𝑖𝑗 is, 

 

𝜎𝑖𝑗 = {𝜎𝑗
𝑚𝑖𝑛, … 𝜎𝑗

𝑚𝑖𝑛 + 𝑘𝐷𝑗
𝜎, … 𝜎𝑗

𝑚𝑎𝑥}; 

𝑘 = 1, … , 𝐴 − 1   (6) 

 

𝐷𝑗
𝜎 =

𝜎𝑗
𝑚𝑎𝑥−𝜎𝑗

𝑚𝑖𝑛

𝐴−1
    (7) 

 

 

 

 

 

 

 
Fig. 1.  These figures a→b→c→d→e→f Illustrate fission 

events by removing neutron prompts and delayed neutrons in 

this case  

Figure 3 illustrates the fission events of the 

SERNM. The plot results of equation 3 can be seen 

in Figure 3(a). Picture (a) tells about the nucleus 
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state before the fission process occurs. In this case, 

the nucleons are spread evenly in the undeformed 

nucleus. Figure 3(b) tells about the initial formation 

of a compound nucleus where the nucleons have 

different individual densities probability function. 

SERNM illustrates a nucleon as a density function 

(see equation 1). The energy received by the nucleus 

from outside causes the nucleons to change their 

position and density function shape. This event 

occurs as a result of energy changes from each 

nucleon. As a consequence, the density (it is built by 

equation 3) is no longer flat. Figure 3(c) starts to 

appear scattered alongside the 𝑧-axis. The image 

moves away from 𝑧 = 0 and then the curve begins 

to decrease. Referring to Fink and Maruhn [16-17], 

the parameter 𝐶𝑗 acts as a fragment coordinate. Due 

to the energy from outside the nucleus, this 

parameter enlarges to the maximum limit. The 

equation below describes the intended 𝐶𝑗 change. 𝜒 

is the SERNM parameter to be adjusted. 

 

𝐶𝐿
𝑛𝑒𝑤 = 𝐶𝐿

𝑜𝑙𝑑 − 𝜒;  
 𝐶𝑅

𝑛𝑒𝑤 = 𝐶𝑅
𝑛𝑒𝑤 + 𝜒;   (8) 

 

If it has reached the maximum stretching 

limit, the random numbers in equation 2 will 

contribute only to the nucleons spreading within 

the nucleus. This process is what happened to 

the image (d-e). Finally, picture (f) shows the 

processing of the nuclear rupture neck. 

One iteration from the Figure 3(a) to 3(f) is 

called fission event. To determine the fission 

yield curve, it needs 𝑁 fission event. As the 
principle in Monte Carlo, the greater the value of N 

causes the smaller random variation from 

calculation results. Therefore, it is necessary to 

generate as many random numbers as possible or as 

many as possible of fission event. 

In Figure 3(f), equations 9 to 11 determine the 

left and right mass fractions. 

 

𝐴𝐿 =
𝐼𝐿

𝐼𝐿+𝐼𝑅
𝐴;  𝐴𝑅 =

𝐼𝑅

𝐼𝐿+𝐼𝑅
𝐴 (9) 

 

𝐼𝐿 = ∑ 1
2√𝜋𝜎𝑖𝐿(1−𝑒𝑟𝑟𝑓(

𝜆𝑖𝐿
𝜎𝑖𝐿

))
𝐴
𝑖=1  (10) 

 

𝐼𝑅 = ∑ 1
2√𝜋𝜎𝑖𝑅(1−𝑒𝑟𝑟𝑓(

𝜆𝑖𝑅
𝜎𝑖𝑅

))
𝐴
𝑖=1  (11) 

 

The flow chart for the model is shown by Figure 

4, 

 

 

 

 
Fig. 4.  The flow chart for the model of one fission event simulation. 

 

 



33 

IJP Volume 33, Number 2, 2022 

 

Figure 3 illustrates the fission process. The 

flow diagram in Figure 4 explains the details of the 

process. Starting with generating a random number 

and then moving the parameter 𝐶𝑗 according to 

equation 8. Continuously shifting until a thinning of 

the neck is reached and a break occurs. This fission 

process is called a fission event. 

 

 

RESULTS AND DISCUSSION 

 

SERNM is a semi-empirical method. Hence 

there are several parameters in the SERNM that are 

adjusted based on experimental data. They are 𝑊𝐿 

and 𝜒 . The process of matching these parameters 

uses fission yield experimental data. The resulting 

parameters are then used to determine other related 

physical quantities. One of the physical quantities 

referred to is the potential barrier peak on the 

nucleus deformation energy curve. In this paper, 

only SERNM parameters are presented. 

 
Fig. 5.  Fission Yield of 238U, 236U, 234U, 233U  with incident energy 500 keV  

 

 

 
Fig. 6.  Fission Yield of 238U, 236U, 234U, 233U  with incident energy 14 MeV 

 

The SERNM parameters used to produce 

Figure 5 are the same for all nuclides 238U, 236U, 
234U, and 233U, the difference lies only in the value 

of 𝐴. It can be seen that the discrepancy between 

Calculation and JENDL are 3.9% for 233U, 1.05% 
234U, 1.48% for 236U and 3.9% for 238U.  

In general, the error between the results of the 

calculation by this method with the JENDL data is 

less than 11%, the majority less than 10%, which 

shows that the adjustment process was well done. 

The results of adjusting the data for 500 keV energy 

give 𝑊𝐿 values of 50, 10, and 5 with weights of 1%, 

69%, and 30%. Meanwhile, the incident energy for 

14 Mev is 80, 20, and 5 with weights of 20%, 79%, 

and 1%. Both of these energies produce a 𝜒 value of 

0.06. 

What is the meaning of 𝑊𝐿 = 80? Equation 5 

can answer that question, if 𝑊𝐿 inserted into 

equation 5, the distance between the nucleons will 

be about 0.6 fm. Refers to the nuclear radius, it 

estimated by 𝑟0𝐴1/3, the maximum distance 

between nucleons is 2.4 fm. Thus, the value of 𝑊𝐿 = 

80 indicates that the nucleons are assembled and 

solidify about 4 times. When the value of 𝑊𝐿 = 20, 

the nucleon density is solid about 14 times. 

The configuration of the 𝑊𝐿 weights 

illustrates the distribution of the 𝑊𝐿 values at the 

nucleus that will be fission. Actually, the number of 
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𝑊𝐿 configurations can be selected more than three. 

The selection of the three 𝑊𝐿 values is only for ease 

of comparison. For low energy of 0.5 MeV, the 

nucleons tend to congregate compared to an energy 

of 14 MeV. This is easy to understand; the incoming 

energy gives the nucleons the ability to scatter. 

This semi-empirical method cannot 

distinguish between protons and neutrons so that for 

the same 𝑊𝐿 and 𝜒, the same fission yield for an 

isobar is produced. Therefore, further studies are 

needed to see the relationship between SERNM 

parameters with mass number, atomic number, and 

incident energy. 

 

CONCLUSION 
 

 
SERNM has successfully demonstrated its 

capabilities as a reliable semi-empirical method. The 

results of calculations using SERNM are the 

parameters   𝑊𝐿 and 𝜒. This parameter describes the 

response of the nucleon when it receives incoming 

energy. The response is the spread of the nucleons 

in the nucleus. Through SERNM, the deployment 

can provide information about the evolution of 

nuclear fission. This achievement makes the 

SERNM parameter useful for calculating several 

other related physical quantities. One of these 

physical quantities is nuclear deformation energy. 
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