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Abstract 

We investigation the parameterization of the cosmological model with the nonminimal derivative coupling of a scalar 

field where gravity is coupled nonminimally with the derivatives of dark energy components in the form of a scalar field. 

We follow the parameterized post-Friedmannian approach for the interacting dark energy theories. We show how the big 

number of free functions can be reduced by limiting certain assumptions to a few non-zero coefficients. We only 

consider the case that the dark sector contains at most second order in time derivatives of the metric and scalar fields. In 

this paper, we demonstrate their use through an example of the dark sector interactions model and classify them 

according to the current literature. 

 

Keywords:  cosmological model, nonminimal derivative coupling, scalar field, parameterized post-Friedmannian, 

interacting dark energy. 

 

 

INTRODUCTION 
 

The results of observational data such as 

Cosmic Microwave Background (CMB), Supernova 

Ia, and Baryon Acoustic Oscillation (BAO) Surveys 

show that most of the universe components consist 

of approximately 68% in the form of dark energy, 

cold dark matter (CDM) around 25%, and baryon 

±5% [1,2]. The two dark sectors are the universe’s 

main component and are currently in the accelerated 

expansion phase. Interaction between dark energy 

and dark matter does not violate current 

observational constraints  [3]. Interacting dark 

energy has been studied in the theory of 

gravitational braneworlds with  Lorentz violation 

 [4–6].  

 

Corresponding author. 

E-mail address: widiyani@fi.itera.ac.id 

 

The models of dark energy can be done by 

modified gravity or modified matter  [7]. Modified 

gravity is modifying the left-hand side of Einstein’s 

equation, by adding the new fields to Einstein’s 

equation (fields of scalar, vector, tensor, or the 

combination) or by adding the extra dimensions. 

Modified matter is modifying the right-hand side of 

Einstein’s equation, for example, models of 

quintessence, phantom, k-essence, coupled dark 

energy, and the chameleon scalar field. The dark 

energy model with nonminimal derivative coupling 

(NMDC) between scalar fields and curvature can 

also give us the universe expansion that accelerated. 

 

At present, various proposals for a modified 

theory of gravity are still very possible. In addition, 

these theories must be compared with cosmological 



IJP Volume 33, Number 2, 2022 

 

2 

data such as the parameterized post-Newtonian 

(PPN) that needs to be confronted with the 

constraints of the solar system measurements to 

being understandable and able to solve the problem 

of dark energy. In the PPN framework, the theory of 

gravity is constrained simultaneously using test data 

around the lunar laser and early satellite experiments 

 [8]. The PPN formalism still has weaknesses, i.e. 

cannot be applied on the cosmological scale, 

therefore we need to find another formalism to make 

the parameterization usable for the cosmological 

theory of modified gravity in general  [9]. A new 

formalism namely the parameterized post-

Friedmannian (PPF) was introduced to test the 

concept of cosmological gravity modification. The 

PPF framework does not rely on the theory of 

modified gravity, it is considers several ways to 

constrain Einstein’s linear equations to maintain the 

properties of the relevant theory of gravity. The PPF 

framework tests modified gravity as an independent 

model and then paves the way to classify and test 

the IDE’s theory. It has been done to the theory of 

modified gravity including the interacting dark 

energy (IDE) models  [10,11]. 

 

In this paper, we adopt the PPF formalism 

with nonminimal derivative coupling (NMDC) of 

scalar field as in the previous work  [12]. We apply 

the interacting term between the dark sector to 

reduce the coincidence problem  [13]. By looking at 

the PPF coefficient resulting from linear 

perturbation of scalar mode in type 1 models from 

article  [14], the physical meaning and characteristic 

of the model can be expressed. 

 

 

BACKGROUND AND PERTURBATION 

EQUATION OF IDE MODEL 
 

The gravitational field equation for the 

theory of IDE can be written as  

        ( ) ( ) ( )( )8
SM GDM DE

G G T T T
   

= + +   (1) 

where G
  is Einstein’s tensor, 

SMT


is the energy-

momentum tensor of the standard model (SM), 
GDMT


 is the energy-momentum tensor of 

generalized dark matter (GDM), and 
DET


 is the 

energy-momentum tensor of dark energy (DE). The 

field equation (1) must fullfill Bianchi’s identity 

0G

 
 = , so that 

        ( ) ( ) ( )( ) 0
SM GDM DE

T T T
  

    + + = .  (2) 

The standard model particle is considered to be not 

coupled into the dark sector explicitly so that 

( )
0

SM
T



  =  and ( ) ( )( ) 0
GDM DE

T T
 

   + = . The 

condition causes a coupling current to occur which 

represents the exchange of energy and momentum 

between the components of dark energy and dark 

matter, 
( ) ( )GDM DE

T J T
 

     = =− .   (3) 

This coupling current takes the form of metric 

potential (and its derivatives) and scalar mode 

which is part of the energy-momentum tensor of the 

dark sector component. 

 

The cosmological model that will be used in 

the PPF framework is a model that Friedmann-

Robertson-Walker (FRW) model as a cosmological 

background. The FRW model corresponds to an 

expanding universe model with a metric containing 

a time-dependent function. The background 

spacetime form of this metric is 

( )2 2 2 i j

ijds a d dx dx = − + .   (4) 

where i, j is the three-dimensional space coordinates 

index, d dt a =  is the conformal time, and ij  is 

the spatial metric. The scale factor as a depends on 

the cosmic time coordinates t. We assume a flat 

spacetime regarding the observation from Wilkinson 

Microwave Anisotropy Probe (WMAP)  [15]. 

 

In PPF formalism, the coupling current is 

parameterized to produce a field equation containing 

at most a second-order time derivative. In addition, 

the dark sector component must satisfy two first-

order linear field equations in the FRW background 

resulting from Eq. (3). Initially we reviewed the 

background FRW spacetime to find an equation that 

describes the dark sector. Furthermore, the linear 

perturbation of this background spacetime is 

reviewed to see its effect on parameterization. In 

this paper, the background variables will be written 

with an overbar sign ‘ ’ (unless the scale factor a 

is always a background variable) and all 

perturbation tensors will be preceded by a delta sign 

 . For example, the momentum energy tensor is 

separated into two parts, i.e. T T T  = + , where 

the first term is the background part and the second 

term represents the perturbation part. 

 

The non-zero component of the energy-

momentum tensor T  from the FRW metric a 

0

0T = −  as the energy density and 
i i

j jT P=  as the 

pressure.  The Einstein equation (1) from the metric 

(4) can be written as 
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        ( )23 8 SM GDM DEG   = + +H    (5) 

and 

        ( )2 2 8 ,SM GDM DE

a
G P P P

a
− = + +H   (6) 

where a a=H  is the conformal Hubble parameter 

and sign prime ‘  ’ shows derivative with respect 

to conformal time  . 

 

The non-zero component of the coupling 

current is 

         
0J Q     (7) 

where ( )Q   is the background coupling function. 

From eq. (4), the continuity equation can be 

obtained as follows 

                      ( )3 1I I Iw s Q +  + =    (8) 

where index I represent the mix of components 

(standard model, generalized dark matter, and dark 

energy), 
I I Iw P   denote the equation of state for 

each component-I, and indicates a constant that is 1 

for dark energy, 0 for the standard model, and -1 for 

generalized dark matter.  

 

The general linear perturbation metric is 

( )2 2 2 21 2 2 i

ids a d a dtdx = − +  − 

( )2 1
3

         1 i j

ij ija h D dx dx  + + +     (9) 

where  ,  , h ,   are four scalar mode that is the 

function of time and space, and 
21

3ij i j ijD =   −   

is the derivative operators that project of 

longitudinal, traceless, and spatial parts of 

perturbation. From the metric eq. (9), we have the 

geometric quantities such as the perturbation of 

Ricci tensor are 

( )1 1
00 2 2

3i i

i iR h H h =   − − + −  

           i

i H−  ,    (10)

( )1
0 2

j j

i i j i i jR   = − +   − 

21 1
3 2

           2 2j

i j i i ih  −  +  −  +  , (11)         

( )1
0 2

j j

i i j i j iR   = − +   − 

21 1
3 2

           2 2j

i ij i ih  −  +  −  +  , (12) 

and 

( )1
3

2ij ij ijR h   = − + + 

( )5
6

         ij ijh   + − + +
 

 

( )

( )

( )

1 1
2 6

1 1
6 2

1 1 1
6 2 2

1 1
2 2

2 1
3

         

         

         

         

         2 2

j i i j i j

k

ij ij k ij

k k k

k ij k i j k ij

k k

j i j i k j ik

ij ij

h

h

h

h

 

   

  

 

 

+  +  −  

+ + + 

−   +   −  

−   −   +  

 +  −  + + 

( ) 1
2

         .k

j i i j k ij   +  + +    (13) 

The perturbation of Ricci scalar is 

( )

2

2

12 2 2

3 2 12

i i

i iR a h

h

 − = −  −   + + 

+  −  + − 
 

2 1
3 2

6 i i i j

i i j ih  +  −   +     (14) 

and the perturbation of Einstein’s tensor are 

( ) 1
00 3

2i i i

i i iG h h  = + +  −    

1
2

           i k

k i+   ,    (15) 

( ) 21
0 2

2 j j

i i j i i j iG    =  +   −  +

1 1
3 2

           2 j

i i j ih +  −  +  ,  (16) 

( ) 21
0 2

2 j j

i i j i j i iG    =  +   −  +

1 1
3 2

          2 j

i i ijh +  −  +  ,  (17) 

and 

( )

( )

( )

( )

( )

2
3

2
3

1
2

1 1
6 6

1 1 1
2 2 2

2 1
3

1
3

4 2

          2

          2

  

  

      2

          

ij ij ij

ij ij

k

j i i j k ij

k

i j k ij j i

k k k

k i j k ij j ik

ij ij

j i i j

G h

h

h h

h

  

 

   



  

 

 

 =   − − 

 +   − +
 

+  +  − 

−   +   −  

+   −   +  

 +  − − 

+  +  + −( )1
2ij ijh +

1
2

      ,k k k l

k ij k ij l k ij    +   −  −    (18) 

where 
ij ijD =  and 

i i = . The perturbation of 

energy-momentum tensor for fluid are 

( )0

0 1T  = − +  ,  

  (19) 

( )0

i iT P = − +  ,    (20) 

( )0

i iT P = − +  ,    (21) 

and 

( ) ( )i i i

j j jT w P D  = + + +     (22) 
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where   is  density  (   ),   is the scalar 

mode of momentum (
i iu a =  ),   is the 

dimensionless pressure perturbation ( P  = ), 

and   is scalar mode from shear ( ij ijD =  ). The 

perturbation of Einstein’s equations are 

( ) 2 1 1
3 2

2 6i i i k

i i k iH h H h +  − −   +    

28 I I

I

Ga  =  ,    (23) 

( )1 1 1
3 2 2

2 i i i k i i k

k k kH h   −  +  − −   − 

( )2 22 2 8i i i

I I I

I

H H Ga P    − + = +  , (24) 

( )1 1 1
3 2 2

2 j j j

i i j i j i i jH h   −  +  −  −   − 

( ) ( )28 I I i I I

I

Ga P   = +  − ,  (25) 

and 

( ) ( )
( ) 

( ) ( )

( )

1 1 2 1
3 6 3 2

2

1 1
6 2

1 1
2 2

1 1
2 2

2

4 2 2

k l k

k k l

k k i

k k j

i i i

j j j

i i i k i

j j j k j

i k k i i

k j j k j

h h H h

H H H

h

H

H



  

 

   

  

− +   +  +  − −  

+ +  −  − 

+   − − +  + 

+  +  + −  

+   +   +

( )28 i i

I I j I I j

I

Ga P D    =  + +      (26) 

 

 

THE PPF FORMALISM 
 

We define two scalar modes of perturbation 

q and S, 

0q J      and .i iS J   

 (25) 

The scalar modes q and S are parameterized as a 

linear combination from variables of metric, fluid, 

and gauge. There are 12 variables for each q and S. 

Next, the gauge transformation is done with two 

constraint equations for each q and S,  it can reduce 

the number of perturbation variables up to 10 for q 

and S respectively. The results are 

( ) 1 2 3

1 ˆˆ ˆ6 6
2

DEq Q Q V Q A A A = − +  −  −  +

4 5 6 7
ˆ ˆ ˆ ˆ
GDM DE GDM DEA A A A  + + + +   

8 9 10
ˆ

GDM DE GDMA A A+  +  +    (28) 

and 

1 2 3 4

1 ˆ ˆˆ ˆ6 6
2

DE GDMS QV B B B B = −  −  + +  

5 6 7 8
ˆ ˆ ˆ ˆ DE GDM DE GDMB B B B + + +  +   

9 10 DE GDMB B+  +      (29) 

 

For special case, CDM including is an ideal 

fluid, so that we get 0GDM GDM GDMw = = = . 

Hereafter, dark energy is assumed does not have a 

shear 0DE =  and then the equation of state 

DEw w= . The perturbation of pressure in this case, 

can be shown in terms of DE  and DE , such as 

( ) ( )2 2 2 3 1DE s DE s a DE

DE

Q
c c c w 



 
 = + − +  − 

 
 

( )           C DE  + −    (30) 

where 
2
sc  are the effective sound speed and 

2
ac  is 

the adiabatic sound speed. The adiabatic sound 

speed can be shown in the equation of state w  as  

( )

2

3 1
a

DE

w
c w

Q
w



= +

−  +

.  (31) 

It can be determined that 7A  and 7B  are zero based 

on the description above. 

 

Additionally, we can observe the conformal 

Newtonian gauge condition with 0 = =  and 

0V = . Then, the equation q and S from eq. (28) and 

(29) becomes 

( )1 2 36 6 DEq Q A A A= − − + +  

       4 5 6C DE CA A A  + + +    (32) 

and 

( )1 2 3 46 6 DE CS B B B B = − − + + +  

        5 6DE CB B + +      (33) 

where iA  and iB  ( 1 6i ) are the unknown 

function. 

 

 

SPECIFIC MODEL OF NMDC 
 

Generally, the scalar fields in the 

cosmological model can appear in three forms of 

Lagrangian, i.e. minimal coupling, nonminimal 

coupling, and nonminimal derivative coupling 

(NMDC). Inflation will be absent if the presence of 

NMDC does not allow attractor inflation  [16]. It 

has been reviewed in the context of late-time 

acceleration and inflation. To restore the 

cosmological constant, we use the coupling 

constants of NMDC with behaviors of the de Sitter 

universe  [17]. 

 

The generalized NMDC to the five-

dimensional Universal Extra Dimension (UED) 

model has an accelerated expansion of the universe. 

The cosmological constant can be written in the 

form of a combination of the coupling constant of 
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this model. The effect of NMDC on changes in the 

value of gravitational constant G  has also been 

carried out in  [18,19]. An expansion of the NMDC 

model has also been carried out on the braneworld 

model of Randall-Sundrum in five-dimensional 

 [20].  

 

The action of NMDC model in  [13], that is 

( )4 1

2 2

R
S d x g g G  

   


= − −   −


  

( ) ( )         mV F L  − −  .   (34) 

where  denotes the quintessence field by taking 

the value +1 and -1 for the phantom field, ( )V   is 

the scalar field potential, ( )F e =  indicates the 

interacting term between the dark sector with 

constants   and   > 0, and mL  represent the 

Lagrangian density of matter (except baryons and 

radiation which are subdominant and supposed to be 

minimally coupled to gravity). In this work, we 

assume 8 1G c = = = . The action variations 

related to the metric tensor to get the Einstein’s field 

equation, as follows 
( ) ( ) ( ) ( ),m

G T VT gT   






  + + −=  (35) 

with 

( ) 1

2
T g 
    


   =  −    

( )

( )

( )
2

2

1

2

   

1
  

2

1 1
  

2 2

G

T R R R

R

g

  
        

  
   

 
    

  
   

     

   

   

  

  −  − 

−     

    +  

 

=

−

+


−   −  



 

    R
  −     (36) 

where ( )
T


and ( )

T


 related to the variation that 

depend on the scalar field and ( )m
T  is the matter 

energy-momentum tensor. 

 

In order for the third derivative terms of 

scalar fields can be eliminated, we can take the 

relationship between two couplings constants like 

2 0 + = . The resulting still have a complicated 

form so it is very difficult to find a solution directly. 

To find constraints that can make the equation 

simpler, we need to consider certain cases. In this 

paper, the De Sitter solution provides constraints in 

the form of parameter values for the Hubble 

constant and a scalar field shown in a linear function 

with respect to time (constant) as in  [7]. Therefore, 

the background values of density and pressure from 

the NMDC action (34) are 

2

2

4 2
2 17

3
2 2

H H
a

a


 −+

 
= − + 

 
 

         ( ) ( ) mFV   + +    (37) 

and 

2
4 2 2

2

3

22

2
p H H

a
a 


 −  

= − 
 

+  

         ( ) ( ) mFV   − + .   (38) 

 

The coupling current that will be used in 

parameterization with this NMDC is the coupling 

current from model of coupled dark matter to dark 

energy type 1[14], as follows 

CJ    = −    (39) 

where   is free function to scalar field   (


 
 


 ) 

and subscript C denotes CDM. The function of 

background coupling is 

  
0 CQ J   = = − .  (40) 

 

The equation of parameterization q dan S 

becomes 

C Cq Q


   



 
= − + + 

 
 

  

and    

     S Q



= .   (41) 

We use the equation of state parameter of dark 

energy 1w = −  to constrain the model  [21]. From 

the eq. (37-38), we get  

              
( )

16
3

2

2
2 m

DE

a F  




+
= −


.  (42) 

Next, from the equation perturbation of density and 

pressure (39-40), we find 

( )
( ) ( )

216
3

3

2 3 19

DE DE

DE

m DEF

 


  

 +
= −

−
 

                 
( )3 19

DE

DE

V


 
−

−
  (43) 

and 

  
64 114

32 41

m

m





−
 =

−
  (44) 

 

Both above equations are substituted into 

the equation (41)  
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( )
( ) ( )

216
3

3

2 3 19

DE DE

C DE

m DE

Q
q Q Q

F

 
 

  

 +
=  + −

−
                  

     

( )

( )
16

2

3

2

3 19

m C

DE

DEDE

Q aV F    


 

 
 −
 + 

−
−

 (45) 

and       

        
DES Q=    (46) 

where DE  =  is the momentum divergence of 

scalar field. If 

          
( )1 8 15

1
1 16

G P

G

 

 

+ +
=

+
,  (47) 

we will have the PPF coefficients if comparing the 

equations (45) with (32) and (46) with (33), we get 

1 2 6 0,A A A= = =

( )
( ) ( )

216
3

3

3
,

2 3 19

DE DE

m DE

Q
A

F

 

  

 +
= −

−
  

4 ,A Q=

 

( )

( )
5 16

3

22
,

3 19

m C

DEDE

aV Q F
A

    

 

 
 = −
 +− 



−



 

and 

5 .B Q=      (47) 

 

 

CONCLUSION 
 

This work, we parameterization of the 

interacting dark energy model, i.e. coupled dark 

matter to dark energy type 1 with NMDC in the PPF 

formalism. These theories depends on number of 

parameter, such as the background field energy 

density, the chosen coupling function, the 

background coupling, the potential, etc. For type 1 

with NMDC, we have 3 values of A whose 

coefficient is not zero and only 1 non-zero B  

coefficient. This results corresponding with previous 

work  [12]. In particular, from all the cases we 

studied, the coeffients A1, A6, B1, B2, and B4  were 

always zero. It would be indeed be very interesting 

to find models for which any of these coefficients in 

nonzero. 
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