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Abstract 

The GW170817 event manifests that gravitational wave velocity is close to the speed of light. As a result, several theories 

of gravity are no longer applicable, including Einstein-Gauss-Bonnet (EGB) inflation. However, a constraint equation 

could be applied so that the theory could produce a viable result. In this study, the EGB inflation is being extended by 

adding a non-minimal coupling (NMC) and a non-minimal derivative coupling (NMDC). Free parameters values were 

evaluated to obtained viability with observational indices. We use power law and exponential Gauss-Bonnet coupling 

functions. Each model provides observational values of 𝑛𝑠 and 𝑟 that are compatible with the observations and has its 

characteristic. It specifies the free parameter that controls the alteration of 𝑛𝑠 and 𝑟 values. The power-law model is 

controlled by the power 𝑚 of the Gauss-Bonnet coupling function and the potential integration constant, 𝑉2. While the 

exponential model is controlled by the potential integration constant 𝑐 and the power 𝑚 of the exponential function. Some 

approximations do not hold true so that the models need to be rectified. Apparently, the rectified power-law model is 

violating null energy condition (NEC), so we also provide the non-violating NEC power-law model.    

 

Keywords:  GW170817, Einstein-Gauss-Bonnet, inflation, NEC. 

 

 

 

INTRODUCTION 

 

 As the inflation theory proposes, the universe 

should encounter an era of accelerated expansion to 
solve several problems of the former Big Bang theory 

[1]. The most well-known theory is slow-roll 

inflation in which the acceleration of the universe is 
generated by a scalar field that is slowly rolling at its 

potential [2], this inflation theory is still progressing 

until recently. The rapid expansion of the universe at 

𝑡 ≃ 10−35s which is associated with the shrinking of 

Hubble radius is affecting some cosmological scales 

of interest to freeze out and re-enter at some later 
times. Cosmological perturbation which appeared as 

CMB fluctuations was created during this era, about 

𝑁 =  60 e-folds before the end of inflation [3]. The 
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essential tools related to inflation is the comoving 

Hubble radius, (𝑎𝐻)−1 , or Hubble horizon. Any 

scales of interest are able to contact each other inside 
this horizon (subhorizon) and ”freeze out” outside 

(superhorizon). Former Big Bang scenario followed 

this path until Cosmic Microwave Background 
observation shed path in history. This radiation was 

first detected in 1965 by Penzias and Wilson [5] as 

the relic of our infant universe. From the map, we 

realize that our observational universe is not as 
homogeneous and isotrophy as we once believed. 

The problem started to rise, how could some scales 

of interest that never contacted are sharing a nearly 
equal temperature. Aforementioned scenario failed 

toexplain this. There has to be an era where these 

scales ever contacted. Then inflation scenario came 
to the ”rescue” as the seed of the scenario. Briefly, 
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cosmological perturbation started their lives in sub-

horizon scales [3], 𝑘 ≫ (𝑎𝐻)−1 , and freeze out once 

they on superhorizon scales, 𝑘 ≪ (𝑎𝐻)−1 so that 

they ever contacted in the past, out of our ability to 

see. As mentioned before, these scales re-rentry at 
some later times carrying information from the 

earlier universe. Since inflation ”stretched” our 

universe to earlier time [3], means that our 

observational universe is no longer ”start” at t = 0 but 
even further before to give chance of cosmological 

scales to contact. However, this theory is still 

speculative that we could attempt various approaches 
to obtain viability. Another scenario of inflation are 

feasible such as quantum entanglement in inflation as 

reader is pleased to check in refs. [7, 8, 9]. 
 

The CMB fluctuations have been considered to have 

started during the inflationary era. The gravitational 

wave that resonates with tensor perturbation in the 
early universe is investigated in this work. We’ll be 

presenting the recent notable event involving 

gravitational waves. The binary neutron star merger 
was discovered by the LIGO and Virgo inferometers 

in August 2017 [10]. The GW170817 event revealed 

that gravitational wave speed is close to the speed of 
light, implying that gravitons are nearly massless. 

This is due to the fact that this event occurred at 

almost simultaneously as a gamma-ray burst (GRB) 

GRB170817A, which was observed independently 
by Fermi detectors [11]. The observed time delay 

between the two was 1.74 ±  0.05 s [10]. Hence it 

ruled out several modified gravity theories that 
contradict the event (see ref. [11] for reviews) 

including Einstein-Gauss-Bonnet inflation [14, 24, 

12, 13]. However, several works [12, 13, 14] 

indicated that the theory are able to obtain viability 
after a certain constraint imposed. Einstein-Gauss-

Bonnet theory is an appealing candidate because it is 

string corrected theory [12, 13, 14]. 
 

In this work, we are tempted to modify this theory by 

including a non-minimal coupling (NMC) and a non-
minimal derivative coupling (NMDC) to the action 

and see the behaviour that might arise. The prior was 

first proposed by Amendola in 1993 [15, 16]. 

According to [15], NMC term has been enganged to 
production of oscillating Universe, allows to solve 

the ”graceful exit” problem of the old inflation and 

many other employment as ca be seen in [15] and 
references therein. As for the NMDC, it was 

proposed by Granda in 2010 [17]. The interesting 

thing is NMDC term potrays as a dark matter at early 
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stage [17, 16]. Another examples of using this term 

can be checked in [16]. 
 

In fact these type of theory belong to the general 

scalar-tensor Horndeski theory [18, 19, 20]. 
However, Horndeski theories also flawed to describe 

phenomonology of GW170817 since it produced 

gravitational wave speed less than the speed of light 

[13, 11]. We will soon reveal that the theory is still 
capable to describe the evolution of universe. We use 

effective field theory approach to study perturbation 

view. This theory is useful to deal with low-energy 
degrees of freedom present for inflation [18]. It is 

showed that general Horndeski theory belongs to the 

action of EFT framework [18, 20]. This theory also 
provide distinct form of power spectrum from standar 

single-field slow-roll inflation model. However, this 

theory allows the speed of scalar and tensor 

perturbation other than the speed of light. We then 

apply 𝑐𝑇 = 𝑐 = 1 in natural units, which agrees with 

the previously mentioned event. 

 
In section 2, we reconstruct the action consisting six 

terms including Einstein-Gauss-Bonnet and is 

followed by non-minimal and non-minimal 

derivative coupling then derive the equation of 
motion. In section 3 we compute the perturbative 

terms in EFT framework, employing Horndeski’s 

theory. We proceed to expand the action up to second 
order in Hordenski lagrangian so that we could get 

equation for gravitational wave speed from the tensor 

perturbation. In the subsequent section 4 we 
incorporate GW speed constraint into the dynamics 

that have been built and using this we obtain 

constraint equation in term ϕ˙ which is applied to 

background equations and slow-roll indices. This 
method has been used in refs. [14, 24, 12, 13]. Slow-

roll indices arise from the dynamics of background 

and fluctuations dynamics. In section 5, given two 
models of Gauss-Bonnet scalar function and study 

their behaviour in agreeing with observational 

indices. We also present about the null-energy-

condition violation that might arise in the models in 
section 8. 

 

 
MODEL RECONSTRUCTION 

 

 Consider the following action 
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𝑆 = ∫ 𝑑4𝑥 √−𝑔 (
𝑅

2
 −

1

2
 𝑔µ𝜈𝜕µ𝜙𝜕𝜈𝜙 − 𝑉(𝜙)

+
1

8
 𝑓(𝜙)𝑅𝐺𝐵

2 −
1

2
𝜁𝜙2𝑅

+ 𝜉𝜙𝐺µ𝜈𝜙;µ𝜈  ) ,                        (1) 

 

the first term of (1) is the Einstein-Hilbert term where 

𝑅 is a Ricci scalar and we have used 𝑀𝑝𝑙
2 =

1/(8𝜋𝐺) = 1 in natural unit. The next two terms are 

kinetic and potential part of scalar field, 𝑓(𝜙) is a 

Gauss-Bonnet coupling scalar function, while 𝑅𝐺𝐵
2 =

 𝑅µ𝜈𝜌𝜎 𝑅µ𝜈𝜌𝜎 − 4𝑅µ𝜈𝑅µ𝜈 + 𝑅2 describes the Gauss-

Bonnet invariant with 𝑅µ𝜈𝜌𝜎  and 𝑅µ𝜈  are Riemann 

tensor and Ricci tensor, respectively. The last two 

terms are NMC coupling and NMDC coupling with ζ 
and ξ being its coupling constant, respectively. This 

type of model also studied in ref. [25]. In this work, 

we assume the background metris is flat FLRW 

(Friedmann-Lemaitre-Robertson-Walker) 
 

𝑑𝑠2  =  −𝑑𝑡2  +  𝑎2(𝑡)𝛿𝑖𝑗𝑑𝑥𝑖  𝑑𝑥𝑗                    (2) 

 

with the metric component reads as 𝑔µ𝜈  =

 𝑑𝑖𝑎𝑔 (−1, 𝑎2(𝑡), 𝑎2(𝑡), 𝑎2(𝑡)). 

  
We need to vary action (1) with respet to the metric 

and the scalar field to get the equation of motion. The 

resulting energy momentum tensor are 

 

𝐺00  =  3𝐻2 , 
𝐺𝑖𝑗 =  𝑎2𝛿𝑖𝑗 (−2�̇� − 3𝐻2), 

 𝑇(𝜙)00 =
1

2
 �̇�2 + 𝑉(𝜙), 

𝑇(𝜙)𝑖𝑗 = 𝑎2 𝛿𝑖𝑗 (
1

2
 �̇�2  −  𝑉(𝜙)) , 

𝑇(𝑓)00 = −3𝐻3�̇�, 

𝑇(𝑓)𝑖𝑗  =  −𝑎2 𝛿𝑖𝑗 [−𝐻2�̈�  

−  2(�̇�  + 𝐻2 )�̇�𝑓],             (3) 

𝑇(𝜁)00  =  3𝐻2 𝜁𝜙2  +  6𝜁𝐻𝜙�̇�, 
𝑇(𝜁)𝑖𝑗  =  𝑎2 𝛿𝑖𝑗𝜁𝜙2 (−2�̇�  −  3𝐻2 )

−  𝜁𝑎2 𝛿𝑖𝑗 (2�̇�2  +  2𝜙�̈�  

+  4𝐻𝜙�̇�), 

𝑇(𝜉)00  =  −9𝜉𝐻2�̇�2 , 
𝑇(𝜉)𝑖𝑗  =  𝑎2 𝛿𝑖𝑗𝜉(3𝐻2�̇�2  +  4𝐻�̇��̈�  

+  2�̇��̇�2 ). (3) 

 

Therefore varying gravitational action eq. (1) with 

respect to the spacetime, we obtained the equation of 
motions as follows 

 

3𝐻2 (1 + 𝐻�̇�) =
1

2
 �̇�2 + 𝑉 + 3𝐻2𝜁𝜑2  + 6𝜁𝐻𝜑�̇�

− 9𝜉𝐻2�̇�2 ,                                    (4) 

 

2𝐻˙ = (2𝜁 − 1 )�̇�2 + 𝐻(𝐻2�̇� − 2�̇�𝑓 − 𝐻�̈�) −

          −2𝜁𝜙(𝐻�̇� − �̇�𝜙 − �̈�) + 2𝜉�̇�[(3𝐻2 −

           �̇�)�̇� − 2𝐻�̈�].                                                    (5)           

 

Then Euler-Lagrange equation of lagrangian eq. (1) 

with respect to the scalar field are calculated to yield 
 

(1 − 6𝜉𝐻2)(�̈� + 3𝐻�̇�) + 𝑉′ 

−3𝑓′𝐻2(�̇� + 𝐻2 ) + 6𝜁𝜙(2𝐻2 + �̇� )                  (6) 

−12𝜉𝐻�̇�𝜙 = 0 

 

The dot and prime represent differentiation with 
respect to cosmic time and scalar field, respectively. 

Furhtermore, eqs. (4)-(6) can be simplified hence 

become easier to be solved analytically, thus we shall 
impose slow-roll approximations which read 

 

�̇� ≪ 𝐻2 , �̇�2 ≪ 𝑉, �̈� ≪ 𝐻�̇�                                      (7) 
 

Once these conditions imposed, we obtained 

following equations 
 

3𝐻2 (1 + 2𝐹 − 3𝐸′�̇�2 + 𝐻�̇�) =
1

2
 �̇�2 + 𝑉 − 6𝐻�̇� , 

 

2�̇�(1 + 2𝐹 + �̇�𝑓 + �̇��̇�) =  −�̇�2 − 𝐻2�̈� + 𝐻3�̇� +

2𝐻�̇�  − 2�̈� + 6𝐻2�̇� �̇� −  4𝐻�̈�𝜙 ,                         (8) 

 

�̈� + 3𝐻�̇� + 𝑉′ − 3𝑓′𝐻4 − 3𝑓′𝐻2�̇�  − 12𝐹′𝐻2

− 72𝐹′�̇� − 6𝐸′𝐻2�̈� − 12𝐸′𝐻�̇��̇�

− 18𝐸′𝐻3�̇� = 0, 
 

where we have employed following redefinition 

 

𝐹(𝜙) = −
1

2
 𝜁𝜑2𝐸(𝜙) = 𝜉𝜙   (9) 

 

Hence �̇� = −𝜁𝜙�̇�, �̈� = −𝜁�̇�2 − 𝜁𝜙�̈�  and �̇� =
 𝜉𝜙, ˙ 𝐸¨ =  𝜉𝜑¨.  

 

However, the simplified eq. (8) are still remain 

unsolvable, more approximations are needed then we 
can examine the viability of the models [24, 12]. 

Based on refs. [13, 12], Gauss-Bonnet coupling 

function can be neglected to attain more manageable 
equations. Then since we have performed redefiniton 

to some functions, one can impose additional 

approximations analogous to slow-roll 

approximation,  
 

�̈� ≪  𝐻�̇� , �̈� ≪  𝐻�̇�              (10) 
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With this, (7) and (10) in hand, we obtained 
 

3𝐻2(1 + 2𝐹) ≃ 𝑉 − 6𝐻�̇�                                     (11) 

 
2�̇�(1 + 2𝐹) ≃ −�̇�2 + 2𝐻�̇� + 6𝐻2�̇��̇�             (12) 

 
(3𝐻 − 18𝐻3𝐸′)�̇� + 𝑉′ − 12𝐻2𝐹′ ≃ 0            (13) 

 

or 

 

 𝐻2 (1 − 𝜁𝜙2) ≃
1

3
 𝑉 +  2𝐻𝜁𝜙�̇�            (14) 

 

�̇�(1 − 𝜁𝜙2) ≃ −
1

2
 �̇�2(1 − 6𝜉𝐻2) − 𝐻𝜁𝜙�̇�   (15) 

 

𝑉′ + 12𝐻2𝜁𝜙 + (3𝐻 − 18𝐻3𝜉)�̇� ≃ 0,              (16) 
 

where we have written the functions back to the 

equations. We will soon check the validity of 
foregoing approximations later in section 5. 

 

 

DYNAMICS OF SCALAR AND TENSOR 

PERTURBATION 

 

 It is vital to address perturbation theory when 
dealing with inflation since it manifests the things 

that relevant to observation. It is also important to 

stress that inflationary tensor fluctuations of the FRW 
metric background arise from inflationary tensor 

fluctuations of the field itself, via mechanism that is 

similar to which leading to their scalar counterparts. 

 
To consider the perturbation, we work in ADM 

(Arnowitt-Deser-Misner) formalism. In the presence 

of scalar field 𝜙, we can chose unitary gauge 𝛿𝜙 =
 0. This constant scalar field lays on constant time 

hypersurface [18]. Generally, ADM metric has the 

form 

 

𝑑𝑠2 = −𝑁2𝑑𝑡2 + ℎ𝑖𝑗(𝑑𝑥𝑖 + 𝑁𝑖  𝑑𝑡) 

(𝑑𝑥𝑗 + 𝑁𝑗𝑑𝑡),                                        (17) 

     
where N is the lapse function, Ni is shift vactor and 

hij is the three-dimensional metric. Flat FRW metric 

follows the form 𝑑𝑠2 = −𝑁2(𝑡)𝑑𝑡2 +
𝑎2𝛿𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 . 

 

General gravitational theories depend on scalar 
quantities appearing in the ADM formalism such that 

 

 𝑆 = ∫ 𝑑4𝑥 √−𝑔𝐿(𝑁, 𝐾, 𝒮, ℛ, 𝒵, 𝒰; 𝑡).    (18) 

 

The field kinetic term [18], 𝑋 ≡ 𝑔µ𝜈𝜕µ𝜙𝜕𝜈𝜙, 

depends on 𝑁 and 𝑡. The field 𝜙 participates the 

equation of motion through the partial derivatives 

𝐿𝑁 ≡ 𝜕𝐿/𝜕𝑁 and 𝐿𝑁𝑁 ≡ 𝜕2𝐿/𝜕𝑁2 [18]. In this 

framework we consider Maldacena gauge to fix time 
and spatial reparametrizations [26] 

 

ℎ𝑖𝑗 = 𝑎2(𝑡)𝑒2𝛩 (𝛿𝑖𝑗 + 𝛾𝑖𝑗 +
1

2
 𝛾𝑖𝑙𝛾𝑙𝑗) ,(19) 

 

where 𝑎(𝑡), 𝛩, 𝛾 are scale factor, scalar perturbation 
and tensor perturbation, respectively. The latter is a 

traceless and divergence-free tensor such that 𝛾𝑖𝑖 =
𝜕𝑖𝛾𝑖𝑗 =  0. It has two modes of polarization, 

 

𝛾𝑖𝑗 = ℎ+𝑒𝑖𝑗
+ + ℎ×𝑒𝑖𝑗

×  .             (20) 

 
In Fourier space, the transverse and traceless tensors 

𝑒𝑖𝑗
+ and 𝑒𝑖𝑗

× satisfy normalization condition such that 

𝑒𝑖𝑗(𝒌)𝑒𝑖𝑗  
(−𝒌)∗  = 2 for each polarization, while 

𝑒𝑖𝑗
+(𝒌)𝑒𝑖𝑗

×  (−𝒌)∗ =  0 [18]. Scalar and tensor 

perturbation can be analyzed separately due to 
decomposition theorem. Expansion of Lagrangian in 

eq. (18) up to second order is 

 

𝐿 = �̅� − �̇� − 3𝐻𝐹 + (�̇� + 𝐿𝑁)𝛿𝑁 +

𝐸𝛿1𝑅 + (
1

2
𝐿𝑁𝑁 − �̇� ) 𝛿𝑁2 +

𝐴

2
𝛿𝐾2 + 𝐵𝛿𝐾𝛿𝑁 +

𝐶𝛿𝐾𝛿1𝑅 + 𝐷𝛿𝑁𝛿1𝑅 + 𝐸𝛿2𝑅 +
𝐺

2
𝛿1𝑅2 +

𝐿𝑆𝛿𝐾µ𝜈  𝛿𝐾𝜇
𝜈  + 𝐿𝑍𝛿𝑅𝜈

µ
𝛿𝑅µ

𝜈 ,                (21) 

 
where 

 

𝐴 = 𝐿𝐾𝐾 + 4𝐻𝐿𝑆𝐾 + 4𝐻2𝐿𝑆𝑆,  
 
𝐵 = 𝐿𝐾𝑁 + 2𝐻𝐿𝑆𝑁 , 

 

 𝐶 = 𝐿𝐾𝑅 + 2𝐻𝐿𝑆𝑅 +
1

2
𝐿𝑈 + 𝐻𝐿𝐾𝑈 + 𝑠𝐻2𝐿𝑆𝑈 ,  

 

                    𝐷 = 𝐿𝑁𝑅 −
1

2
 𝐿𝑁𝑈

̇ ,               (22) 

 
𝐺 = 𝐿𝑅𝑅 + 2𝐻𝐿𝑅𝑈 + 𝐻2𝐿𝑈𝑈 . 

 
Moreover it is useful to express the Lagrangian in the 

Lagrangian density form so that the scale factor 

makes its appearance. In ADM formalism 

Lagrangian density is expressed as ℒ = √−𝑔𝐿 =

𝑁 √ℎ𝐿, where h is the determinant of three 

dimensional metric ℎ𝑖𝑗 . Finally we can express 
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Lagrangian density in second order in following 

manners 
 

𝐿2 = 𝛿 √ℎ [(𝐹 + 𝐿𝑁)𝛿𝑁 + 𝐸𝛿1𝑅] + 𝑎3  [(𝐿𝑁 +
1

2
𝐿𝑁𝑁  ) 𝛿𝑁2 + 𝐸𝛿2𝑅 +

𝐴

2
𝛿𝐾2 + 𝐵𝛿𝐾𝛿𝑁 +

𝐶𝛿𝐾𝛿1𝑅 + (𝐷 + 𝐸)𝛿𝑁𝛿1𝑅 +
𝐺

2
𝛿1𝑅 +

𝐿𝑆𝛿𝐾𝜈
µ

𝛿𝐾µ
𝜈  + 𝐿𝑍𝛿𝑅𝜈

µ
𝛿𝑅µ

𝜈]               (23) 

 

where we have used 𝛿(𝑁√ℎ𝐿 = √ℎ𝐿𝛿𝑁 + 𝑁𝐿𝛿ℎ +

𝑁√ℎ𝛿𝐿 and at the and of calculation we set 𝑁 =  1. 

 
In 1993, Horndeski [19] proposed a work in which 

constructing Lagrangian with higher order terms 

which leads to second order field equation. This work 

is equivalent with Generalized Ginflation which 
associates to Galileon symmetry breaking when the 

spacetime is curved [21, 20]. Furthermore, these 

theory belong to EFT framework. In this work, we 
can exploit Horndeski theory since it is the most 

general scalar-tensor theory as we’ve mentioned 

earlier. The action of Horndeski theory defined as 

[19, 18, 20] 
 

 𝑆 = ∫ 𝑑4𝑥 √−𝑔 𝑋 Σ1=2
5  𝐿𝑖  ,             (24) 

where 
 

𝐿2 = 𝐺2(𝜙, 𝑋), 
 

 𝐿3 = 𝐺3(𝜙, 𝑋)𝜙,                                              (25) 

 
𝐿4 = 𝐺4(𝜙, 𝑋)𝑅 − 2𝐺4𝑋(𝜙, 𝑋)[(𝜙)2  − 𝜙;𝜇𝜈𝜙;µ𝜈]  , 

 
 𝐿5 = 𝐺5(𝜙, 𝑋)𝐺µ𝜈𝜙;µ𝜈

+
1

3
𝐺5𝑋  [(𝜙)3 − 3(𝜙)𝜙;µ𝜈𝜙µ𝜈

+ 2𝜙;µ𝜈𝜑µ𝜎𝜑;𝜎
;𝜈 ] , 

 

w

h
e

r

e
 

�
 

i
s

 

t
h

e

 
a

f

o

r
e

m

𝐺2 =
1

4
𝑓′′′′𝑋2 [3 − ln (−

𝑋

2
)],  

 

𝐺3 = −
1

4
 𝑓′′′𝑋 [7 − 3 ln (−

𝑋

2
)],                     (26) 

 

𝐺4 = −
1

4
𝑓′′𝑋 [2 − ln (−

𝑋

2
)],  

 

𝐺5 = −
1

2
𝑓′ ln (−

𝑋

2
). 

 

With these in hands, eq. (1) can be translated by 

Horndeski language with the functions 

 

𝐺2 = −
𝑋

2
 − 𝑉 +

1

4
 𝑓′′′′𝑋2 [3 − ln (−

𝑋

2
)] , 

𝐺3 =
1

4
𝑓′′′𝑋 [7 − 3 ln (−

𝑋

2
) ] , 

𝐺4 =
1

2
 −

1

2
 𝜁𝜙2 −

1

4
 𝑓′′𝑋 [2 − ln ( −

𝑋

2
) ] , 

𝐺5 = 𝜉𝜙 −
1

2
𝑓′ ln (−

𝑋

2
) .                            (27) 

 
Subsequently, we will see the emergence of scalar 

and tensor fluctuations. These fluctuations can be 

treated separately due to decomposition theorem [4]. 

The vector part is ignored since it is diluted away 
when acceleration expansion happened [4, 21]. 

 

3.1 Scalar Perturbation 
 

On using eq. (19) while ignoring tensor part, 

dynamical of scalar perturbation are obtained by 
calculating eq. (23) and its components, 

 

𝐿𝑠 = 𝑎3𝑄𝑠 [ �̇�2 −
𝑐𝑠

2

𝑎2]              (28) 

 

𝑄𝑠 =
2𝐿𝑆

3𝑊2
(9𝑊2 + 8𝐿𝑠𝑤)             (29) 

 

𝑐𝑠
2 =

2(�̇�+𝐻𝑀−𝐸)

𝑄𝑠
                          (30) 

 

where 𝑄𝑠 and 𝑐𝑠
2 are the auxiliary function. 

Nevertheless, notice that lagrangian (28) is the wave 

equation, thus 𝑐𝑠 is considered as speed of sound of 
scalar perturbation.  

 

The quantities in eqs. (28)-(30) are 
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𝐿𝒮 =
1

2
(1 − 𝜁𝜙2 + 𝐻𝑓′�̇� + 𝜉�̇�2), 

 

𝑤 ≃ 3 [−3𝐻2(1 − 𝜁𝜙2) + 9𝐻(𝜁𝜙 − 𝐻𝑓′)�̇�

+ (
1

2
− 18𝐻3𝜉) �̇�2 ] 

                (31) 

𝒲 ≃ 2𝐻 (1 − 𝜁𝜙2 +
3

2
𝐻𝑓′�̇�) − 2𝜁𝜙�̇� + 6𝐻𝜉�̇�2 , 

 

 ℳ =
(1−𝜁𝜙2+𝜉�̇�2+𝐻𝑓′�̇�)

2

2𝐻−2𝐻𝜁𝜙2+3𝐻2𝑓′�̇�−2𝜁𝜙�̇�+6𝐻𝜉�̇�2 , 

 

ℰ =
1

2
(1 − 𝜁𝜙2 − 𝜉�̇�2 + 𝑓′′�̇�2 + 𝑓′′�̈�), 

 
where we have only considered up to second order 

and ignore higher orders. 

 

3.2 Tensor Perturbation 

 

On using perturbation in eq. (19) while 

ignoring scalar part, dynamical of tensor perturbation 
are obtained by calculating eq. (23) and its 

components,   

ℒ𝑇 = 𝑎3𝑄𝑇  [�̇�𝑖𝑗
2 −

𝑐𝑇

𝑎2
(𝜕𝛾𝑖𝑗

)
2

] 

 
                     (32) 

 𝑄𝑇 ≡
𝐿𝒮

2
 ,   𝑐𝑇

2 ≡
ℰ

𝐿𝒮
 

 

Since traceless and divergence-free tensor has 

two-mode polarization as in eq. (20) we can 

proceed to express the lagrangian density in this 

mode term. Hence, 

 

ℒ𝑇 = 𝑎3𝑄𝑇 [ℎ𝜆
2̇ −

𝑐𝑇
2

𝑎2
(𝜕ℎ𝜆)2 ]  ,                  (33) 

 

where λ = +, × is each polarization mode. 

 

3.3 Canonical Quantization 

 

Furthermore we need to obtain scalar spectral 
index so that we are able to confront theory with 

observation. First, 𝛩(𝜏, 𝒙) is expressed in Fourier 

mode and transformed such that 
  

𝛩(𝑡, �⃗�) = ∫
𝑑3𝑘

(2𝜋)3  �̂�(𝑡, �⃗⃗�)𝑒𝑖�⃗⃗�·�⃗�              (34) 

 

�̂�(𝑡, �⃗⃗�) = 𝑢(𝑡, �⃗⃗�)�̂�(�⃗⃗�) + 𝑢∗(𝑡, −�⃗⃗�)�̂�†(−�⃗⃗�)         

 

where 𝑘 is the comoving wavenumber, �̂�(𝒌) and 

�̂�† (𝒌) are the annihilation and creation operators, 

respectively which obey commutation relation. 

Similarly, for tensor perturbation, 
 

𝛾𝑖𝑗(𝑡, �⃗�) = ∫
𝑑3𝑘

(2𝜋)3 𝛾𝑖𝑗(𝑡, �⃗⃗�)𝑒𝑖�⃗⃗�·�⃗�             (35) 

 

𝛾𝑖𝑗 = Σλ=+,× ℎ̂𝜆𝑒𝑖𝑗
𝜆                                                 (36) 

 

ℎ̂𝜆(𝑡, �⃗⃗�) = ℎ𝜆(𝑡, �⃗⃗�)�̂�(�⃗⃗�) + ℎ𝜆
∗(𝑡, −�⃗⃗�)�̂�†(−�⃗⃗�).    (37) 

 

Then we proceed to express the Lagrangian (28) and 

(32) in these quantities. Finally the obtained equation 
of motion for each perturbation as follows, 

respectively 

 

�̈� + (3𝐻 +
�̇�𝑠

𝑄𝑠
 ) �̇� + 𝑐𝑠

2 𝑘2

𝑎2 𝑢 = 0,             (38) 

 

ℎ̈𝜆 + (3𝐻 +
𝑄�̇�

𝑄𝑇
) ℎ̇𝜆 + 𝑐𝑇

2 𝑘2

𝑎2 ℎ𝜆 = 0,        (39) 

 

These equations need to be expressed in conformal 

time. The rescaling such that 𝑣 =  𝑧𝑢 and 𝑧 =

𝑎√2𝑄𝑠 which has been studied in [18]. We proceed 

similar manners to both scalar and tensor. After the 

rescaling, eq. (28) becomes 

 

 𝑣′′ + (𝑐𝑠
2𝑘2 −

𝑧′′

𝑧
) 𝑣 = 0,             (40) 

 

which acknowledged as Mukhanov-Sasaki equation 

[3]. Notice that this equation is no longer has 
damping term like in the physical time form. 

 

As universe appears to be quasi-de Sitter during 
inflation, we can employ de Sitter approximation 

where 𝜏 =  −1/𝑎𝐻 hence 

 

 
𝑧′′

𝑧
≃

1

𝑎

𝑑

𝑑𝜏
 𝑎2𝐻 = −𝐻𝜏

𝑑(
1

𝐻2𝜏2)

𝑑𝜏
=

2

𝜏2       (41) 

 

Then eq. (40) is presented as below 
 

𝑣′′ + (𝑐𝑠
2𝑘2 −

2

𝜏2 ) 𝑣 = 0.             (42) 

 

To obtain the solution of (42), we need to consider 

boundary condition as normalization solution. In 
early time where universe is considered vacuum, we 

can choose Bunch-Davies vacuum as the 

normalization solution [18], 

 

𝑣 =
𝑒−𝑖𝑐𝑠𝑘

√2𝑐𝑠𝑘
 .                            (43) 
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Then we got the complete solution as 

 

𝑣(𝜏) =
𝑒−𝑖𝑐𝑠𝑘𝜏

√2𝑐𝑠𝑘
(1 −

𝑖

𝑐𝑠𝑘𝜏
)                         (44) 

 

Remember that 𝑣 =  𝑧𝑢, 𝑧 = 𝑎 √2𝑄𝑠, then eq. (44) 

becomes 

 

𝑢 = −
𝑖𝑒−𝑖𝑐𝑠𝑘𝜏

2𝑎𝜏(𝑐𝑠𝑘)
3
2√𝑄𝑠

(1 + 𝑖𝑐𝑠𝑘𝜏)             (45) 

 
de Sitter solution for mode u yields to 

 

𝑢 =
𝑖𝐻𝑒−𝑖𝑐𝑠𝑘𝜏

2(𝑐𝑠𝑘)
3
2√𝑄𝑠

(1 + 𝑖𝑐𝑠𝑘𝜏)            (46) 

 

for each polarization mode. Following the same 
manner as scalar perturbation, solution for tensor 

mode yield to 

 

ℎ𝜆 =
𝑖𝐻𝑒−𝑖𝑐𝑇𝑘𝜏

2(𝑐𝑇𝑘)
3
2√𝑄𝑇

 (1 + 𝑖𝑐𝑇𝑘𝜏)             (47) 

 

Since the solution for each perturbation has been 
defined, we then proceed to employ it to twopoint-

correlation function which associated with power 

spectrum. Calculating the expectation value of 𝛩 at 
vacuum and taking the solution of eq. (46) in the late-

time and at superhorizon limit, then the scalar power 

spetrum is 
 

𝑃𝛩 =
𝐻2

8𝜋2𝑄𝑠𝑐𝑠
3 ,                  (48) 

 
which is already scale-invariant. Then, the tilt of eq. 

(48) in the horizon crossing, 𝑐𝑠𝑘 =  𝑎𝐻, where the 

cosmological scales of interest remain ”frozen” 
which read as 

 

𝑛𝑠 − 1 ≡
𝑑 ln 𝑃𝛩

𝑑 ln 𝑘
|

𝑐𝑠𝑘=𝑎𝐻

= −2
�̇�

𝐻2
−

𝑄𝑠
̇

𝐻𝑄𝑠
−

3𝑐�̇�

𝐻𝑐𝑠
 .           (49) 

 

As for the tensor perturbation, we calculate the 
expectation value of eq. (35) to yield 

 

𝒫ℎ =
𝐻2

2𝜋2𝑄𝑇𝑐𝑇
3               (50) 

 

The tilt of the tensor power spectrum is a bit different 
than that was defined in scalar. The scale invariant 

tensor spectrum is defined when nT = 0 instead of 

equal to one. The tilt of eq. (50) or tensor spectral 

index at horizon crossing then 
 

𝑛𝑇 ≡
𝑑 ln 𝑃ℎ

𝑑 ln  𝑘
|

𝑐𝑇𝑘=𝑎𝐻
= −

2�̇�

𝐻2  −
𝑄�̇�

𝐻𝑄𝑇
−

3
𝑐�̇�

𝐻𝑐𝑇
           

             (51)  

 
 

CONSTRAINT OF GW SPEED 

 

In Horndeski function, eq. (27), the tensor 
propagation speed in eq. (32) can be written as 

 

 𝑐𝑇
2 =

(𝐺4+
1

2
𝑋𝐺5𝜙−𝑋𝐺5𝑋�̈�)

𝐺4−2𝑋𝐺4𝑋−𝐻�̇�𝑋𝐺5𝑋−
1

2
𝑋𝐺5𝜙

             (52) 

 

where the subscript stands for the derivation with 

respect to quantity of interest, for example 𝐺5𝑋 =
𝑑𝐺5

𝑑𝑋
 

which also applied to the scalar field. Using eq. (27), 

eq. (52) becomes 

 

 𝑐𝑇
2 =

1−𝜁𝜙2−𝜉�̇�2+𝑓′′�̇�2+ 𝑓′′�̈�

1−𝜁𝜙2+𝜉�̇�2+𝐻𝑓′�̇�
,             (53) 

 

where we have used 𝑋 = −�̇�2 . Equating eq. (53) to 
unity to fullfil observational contraint we have 

mentione earlier, 𝑐𝑇
2 ≃ 𝑐 = 1 in natural unit, we got 

the constraint equation, 
 

𝑓′′�̇�2 + 𝑓′�̈� − 𝐻𝑓′�̇� − 2𝜉�̇�2 = 0        (54) 

 
then we can apply slow-roll condition in eq. (7) to eq. 

(54). Slow-roll approach implies 𝑓′�̈� ≪ 𝑓′𝐻�̇� then 

we get the constraint equation as follows 
 

�̇� =
𝐻𝑓′

𝑓′′−2𝜉
 .               (55) 

 

This method was previously used by [14, 24, 12, 13]. 

We apply (55) to eq. (14) to yield 
 

 𝐻2 ≃
1

3
𝑉 [

𝑓′′−2𝜉

(1−𝜁𝜙2)(𝑓′′−2𝜉)−2𝜁𝑓′𝜙
]  ,         (56) 

 

�̇� ≃ −
𝐻2

2(1−𝜁𝜙2)
(

𝑓′

𝑓′′−2𝜉
)

2

[1 + 𝜁𝜙 (
𝑓′′−2𝜉

𝑓′
)]       (57) 

 

𝑉′ + [
4𝜁𝜙(𝑓′′−2𝜉)+𝑓′

(1−𝜁𝜙2)(𝑓′′−2𝜉)−2𝜁𝑓′𝜙
] 𝑉 ≃ 0,                (58) 

 

Referring to refs. [13, 12], approximations 𝑓′𝐻4 ≪
𝑉′ can be applied so that we can attain a more 

managable potential differential equation [12]. Hence 

we can use this analogy to neglect 𝐸′𝐻3�̇� from 
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equation (13) which also contain 𝐻4 term due to the 

form of �̇� from eq. (55) so that eq. (56)-(58) are 

obtained. 

 
To confront the theory with the observation, we need 

some quantities that relates theoretical indices to 

observational indices. The latter is described by 

scalar spectral index, ns, and the tensor-to-scalar 

ratio, 𝑟, while tensor spectral index, 𝑛𝑇 , have yet to 

be observed [12]. From eq. (49) and (51) we can 

define the dynamics of inflation that ruled by these 
slow-roll indices: 

 

𝜖 =  −
�̇�

𝐻2
, 𝜂 =

�̈�

𝐻�̇�
 ,  

 

𝛿𝑄𝑠 ≡
𝑄�̇�

𝐻𝑄𝑠
 ,   𝛿𝑄𝑇 ≡

𝑄�̇�

𝐻𝑄𝑇
 ,                    (59) 

 

𝛿𝑐𝑠 ≡
1

2𝐻𝑐𝑠
2 

𝑑

𝑑𝑡
 𝑐𝑠

2 ,   𝛿𝑐𝑇 ≡
1

2𝐻𝑐𝑇
2

𝑑

𝑑𝑡
 𝑐𝑇

2 , 

 

where the first and the second of eq. (59) was 

naturally arised by slow-roll inflation nature, while 
the rests of it were arised from second-order 

dynamics that we derived in sectopn. 3. It is 

reasonable to define additional slow-roll indices in 
such manners. Note that, according to observation the 

observed indices are [27] 

 

𝑛𝑠 = 0.9649 ± 0.0042, 𝑟 <  0.056,    (60) 
 

where r is tensor-scalar ratio. Notice that in eq. (60), 

scalar spectral index is nearly scale invariant. Hence, 
the RHS of eq. (49) have to be really small compared. 

Meanwhile, tensor spectral index have yet to be 

observed [36, 24]. Hence we approach it to also be 
nearly scale invariant. 

 

When we plug eq. (55) into eq. (16), we get H2 term 

then we substitute eq. (56) into it so that eq. (58) is 
obtained. This shall be done since we want to form a 

differential equation for V to be used further. As can 

be seen in eq. (58), each scalar couplings, scalar 
potential and scalar field are interconnected in one 

differential equation. This also studied in refs. [14, 

24, 12, 13]. The unknown function here is 𝑓(𝜙) 

which belongs to Gauss-Bonnet term, while others 
are constant couplings we’ve mentioned earlier. 

Therefore given a function 𝑓(𝜙), then we are able to 

solve differential eq. (58). We’ve been discussing 
about eqs. (56) and (58), now we proceed to eq. (57). 

It naturally arises the first slow-roll index we wrote 

in (59) 
 

Now we proceed to apply eq. (55) to the quantities in 

eq. (59), we conclude that 
 

𝜖 =
1

2(1 − 𝜁𝜙2)
(

𝑓′

𝑓′′ − 2𝜉
)

2

[1 − 2𝜁𝜙 (
𝑓′′ − 2𝜉

𝑓′
)] 

 

𝜂 =
𝑓′′

𝑓′′ − 2𝜉
− 𝜖 −

(𝑓′′′𝑓′)

(𝑓′′ − 2𝜉)2
 , 

                             (61) 

𝛿𝑄𝑇

=
(−2𝜁𝜙 + 2𝜂𝜉𝐻 + (𝜂 − 𝜖)𝐻2𝑓′)𝑓′(𝑓′′ − 2𝜉) + 𝐻2𝑓′′𝑓′2

(𝑓′′ − 2𝜉)[(1 − 𝜁𝜙2)(𝑓′′ − 2𝜉) + 𝜉𝐻𝑓′ + 𝐻2𝑓′2]
 

 

While the rest of indices in eq. (59) are not written 
explicitly. But we will soon show some quantities 

that still in reach analytically (note that in calculation 

we’ve only considering ϕ˙ up until second order and 

ignoring higher orders). To obtain 𝛿𝑐𝑠
 we need 

 

𝑄𝑠 = 6𝐿𝒮 +
4

3

(ℳ𝑤)

𝒲
  

          (62) 

 𝑄𝑠
̇ = 6𝐿𝒮 +

4

3
 [

(�̇�ℳ + 𝑤ℳ̇)𝒲 − 𝑤ℳ�̇�

𝒲2
] 

 
Their components are calculated as follows 

 

𝐿�̇� =
1

2
(0 − 2𝜁𝜙�̇� + 2𝜉�̇��̈� + �̇��̇� + 𝐻�̈�), 

 

�̇� = 3{− 6𝐻�̇� + �̇��̈�
+ 6[𝜁(𝐻�̇�𝜙2 + 𝐻2𝜙�̇� + 𝐻�̇�2

+ �̇�𝜙�̇� + 𝐻𝜙�̈�)

− (3𝐻2�̇��̇� + 𝐻3�̈�)6𝜉(𝐻�̇�𝜙2

+ 2𝐻2�̇��̈�)}   

                (63) 

�̇� = 2�̇� − 2𝜁(𝐻�̇�2 + 2𝐻𝜙�̇� + �̇�2 + 𝜙�̈�)

+ 6𝜉(�̇��̇�2 + 2𝐻�̇��̈�) + 3(2𝐻�̇��̇�

+ 𝐻2�̈�) 

 

ℳ̇ = 4 (
2𝐿𝒮𝐿�̇�

𝒲
−

𝐿𝒮
2

𝒲2 ). 

 
One can see the details about these quantities in refs. 

[18, 20, 22]. To obtain 𝛿𝑐𝑠
 we need 

 

𝑐𝑠
2 ≡

2

𝑄𝑠
(ℳ̇ + 𝐻ℳ − ℰ) and 

                  (64) 
𝑑

𝑑𝑡
𝑐𝑠

2

= 2 [
(ℳ̈ + 𝐻ℳ + 𝐻ℳ̇ − ℰ̇)𝑄𝑠 − (ℳ̇ + 𝐻ℳ − ℰ)𝑄𝑠

̇

𝑄𝑠
2 ]  
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Their components are 
 

ℳ̈ =
4

𝒲4
[(2𝐿�̇�

2
𝒲 + 2𝐿𝒮𝐿�̈�𝒲 − 𝐿𝒮

2 �̈�) 𝒲2

− 2𝒲�̇�(2𝐿𝒮𝐿�̇�𝒲 − 𝐿𝒮
2 𝒲)] , 

 

𝐿�̈� =
1

2
[−2𝜁(�̇�2 + 𝜙�̈�)

+ 2𝜉(�̈�2 + �̇�𝜙 + 2�̇��̈� + �̈��̇�

+ 𝐻𝑓] 

            (65) 

�̈� = 2�̈� − 2𝜁[�̈�𝜙2 + 2(�̇�𝜙�̇� + �̇�𝜙�̇�) + 3�̇��̈�

+ 𝜙𝜙]

+ 6𝜉[�̈��̇�2

+ 2(�̇��̇��̈� + 𝐻�̈�2 + 𝐻�̇�𝜙)]

+ 3[2(�̇�2�̇� + 𝐻�̈��̇� + 𝐻�̇��̈�𝐻�̇��̈�

+ 𝐻2𝑓) 

 

ℰ̇ =
1

2
[−2𝜁(�̇�2 + 𝜙�̈�) − 2𝜉(�̇�𝜙 + �̈�2) + 𝑓], 

 

To obtain 𝛿𝑐𝑇
 , aside from eq. (53) we need 

 
𝑑

𝑑𝑡
𝑐𝑇

2

=
𝑑

𝑑𝑡

1 − 𝜁𝜙2 − 𝜉�̇�2 + 𝑓′′�̇�2 + 𝑓′′�̈�

1 − 𝜁𝜙2 + 𝜉�̇�2 + 𝐻𝑓′�̇�
  .             (66)  

 

Here we consider two auxiliary functions to make the 

calculation easier. Consider the numerator of eq. (66) 
is a and its denominator is b, so we can proceed 

𝑑

𝑑𝑡
𝑐𝑇

2 =
�̇�𝑏−𝑎�̇�

𝑏2  .               (67) 

 

Their components were obtained as follows 
 

�̇� = −2(𝜁 + 𝜂𝐻𝜉�̇�)�̇� + 𝜂(𝜂 − 𝜖)𝐻2𝑓′�̇�

+ 3𝑓′′𝜂𝐻�̇�2 , 
                (68) 

�̇� = [− 2𝜁𝜙 + (𝜂 − 𝜖)𝐻2𝑓′] �̇� + (2𝜉𝜂 + 𝑓′′)𝐻�̇�2 . 
 

Up until now, we have derived some functions 

required to the models ahead. In the next section, we 

also plot some variables and see the behaviours 
 

 

MODELLING THE SCALAR FUNCTION 

 

 In this section we will derive some spesific 

models of a given scalar coupling function 𝑓(𝜙). 

Then we get the potential from eq. (58). We need an 

input of scalar field 𝜙 which we can get from numer 

of e-folds. By definition, e-folds is 

 

 𝑁 =  ∫ 𝐻𝑑𝑡
𝑡𝑓

𝑡𝑖
                (69) 

 

which can be expressed in 𝜙 as 

 

 𝑁 = ∫
𝐻

�̇�

𝜙𝑓

𝜙𝑖
𝑑𝜙.               (70) 

 

Substituting eq. (55) we obtained 

 

𝑁 = ∫
𝑓′′−2𝜉

𝑓′  
𝜙𝑓

𝜙𝑖
𝑑𝜙.             (71) 

  

We can obtained 𝜙𝑓 by equating in eq. (61) to unity, 

substitute it back to eq. (71) along with 𝑁 = 60 then 

we can get ϕi as the input of scalar field 𝜙 [14, 12, 

13]. 
 

5.1. Power Law Scalar Coupling of 𝑓(𝜙) 

 
 Here we consider f(ϕ) and its derivatives has 

these form 

 

 𝑓 = 𝜆𝜙𝑚 , 𝑓′ = 𝜆𝑚𝜙𝑚−1 ,             (72) 

 

where λ is dimensionful constant and m is the power, 

then we can write its second derivative as 
 

 𝑓′′ = 𝑓′(𝑚 − 1)𝜙−1 .              (73) 

 
This model also studied in ref. [14]. To find the 

expression of potential, we use equation (58) but it 

turned out uneasy to solve. Here we consider 𝑓′′ ≫
2𝜉 to avoid non-linearity and its validity will be 
investigated later on. Then, make use of eq. (73), we 

yield following differential equation 

 

 𝑉′ + [
4𝜁𝜙𝑓′(𝑚−1)𝜙−1+𝑓′

(1−𝜁𝜙)𝑓′(𝑚−1)𝜙−1+2𝑓′𝜁𝜙
] 𝑉 = 0,   (74) 

 

and the resulting scalar potential is 

  

𝑉 = 𝑉2 exp (
(4(𝑚−1)𝜁+1)

(2𝑚−6)𝜁
ln(|(𝑚 − 3)𝜁𝜙2 − 𝑚 +

1|) + 𝑐) ,                (75) 

where 𝑉2 and 𝑐 are integration constant. We also 

make use the approaches to the rest of eq. (14) to 

form 

 

 𝐻2 ≃
1

3
𝑉 [

(𝑚 − 1)𝜙−1

(1−𝜁𝜙2)(𝑚−1)𝜙−1+2𝜁𝜙
] 

                 (76) 

�̇� ≃ −
𝐻2

2(1 − 𝜁𝜙2)
[(𝜙(𝑚 − 1))

2
(1

− 2𝜁(𝑚 − 1))]. 
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Then the slow-roll indices in eq. (61) become 
 

 𝜖 =
1−2𝜁(𝑚 −1)

2(1−𝜁𝜙2)
(

𝜙

𝑚−1
)

2

 

 

 𝜂 = 1 − 𝜖 −
𝑚− 2

𝑚−1
 ,              (77) 

𝛿𝑄 𝑇

=
(−2𝜁𝜙 + 2𝜂𝜉𝐻 + (𝜂 − 𝜖)𝐻2𝑓′) + 𝐻2(𝑚 − 1)𝑓′

[(1 − 𝜁𝜙2)(𝑚 − 1) + 𝜉𝐻 + 𝐻2𝑓′]
 . 

 

where 𝑓′′′ = (𝑚 − 1)𝑓′𝜙−2(𝑚 − 2). The rest of 

slow-roll indices in (61) was not written analytically. 

We then proceed equating 𝜖 = 1 to obtain final scalar 

field 𝜙𝑓 as 

 

2(𝑚 − 1)2 − 2𝜁𝜙𝑓
2(𝑚 − 1)2                                 (78)

= 𝜙𝑓
2(1 − 2𝜁(𝑚 − 1)) 

 

thas has solution 
 

𝜙𝑓 = ± √
2(𝑚−1)2

1+2𝜁(𝑚−1)(𝑚−2)
.              (79) 

 

Then for 𝜙𝑖 as an input, we make use of previous 
approach for N to yield 

 

𝑁 = (𝑚 − 1) ∫
1

𝜙

𝜙𝑓

𝜙𝑖
 𝑑𝜙               (80) 

 

From this we get 

 

𝜙𝑖 = 𝜙𝑓𝑒−
𝑁

𝑚−1                   (81) 

 

to be the input for 𝜙. Then with following example 

values (𝜆, 𝑁, 𝑉2, 𝜉, 𝜁, 𝑚, 𝑐) = (0.1, 60, 1328.28, 

−10−5 , −10−1 , 39.664, 0) then yields 𝑛𝑠 = 0.96465 

and 𝑟 = 0.0241 which are accepted to recent 

observation values [27]. For the unobserved indices 

we obtained 𝑛𝑇 = −0.01948 which is nearly scale 

invariant. Furthermore the initial and final scalar field 

values are 𝜙𝑖 = 0.6800 and 𝜙𝑓 = 3.2095, 

respectively. Finally we obtained slow-roll indices 

which have relatively very small values, 

(𝜖, 𝜂, 𝛿𝑄𝑠
 , 𝛿𝑐𝑠

 , 𝛿𝑄𝑇
 , 𝛿𝑐𝑇

 ) = (0.0013, 0.0246, 0.0666, 

−0.0113, 0.0162, 0.000229). We plot variations of m 
dan V2 for each value of ns and r in figure 1, we got 

the accepted values by searching throughout the plot 

using contour plot in MATLAB. Then variation of ξ 
and m while preserving other parameters are 

presented in figure 2. 

 

We also conduct variation of one variable to see how 

it impact the output of observational indices. In this 
model, the one that give control to a good values of 

observational indices is 𝑚 and 𝑉2. For instance as 

present in table 1. Otherwise if we alter ξ and ζ it does 
give sigificant change, for example if ξ = (−10.10−5, 

−5.10−5 , −2.10−5 , −13.10−3 , −10.10−3 , −10−3) then 

the observational indices are (𝑛𝑠 , 𝑟) = (1.3276, 

0.0136; 1.1755, 0.012; 1.0139, 0.017; 0.962, -14.85; 
0.9704, -13.1305; 1.0483, 1.0659) which give poor 

values of them. Likewise, if ζ = (−1, −0.5, −0.2, 0.1, 

0.5) then the observational indices are (𝑛𝑠 , 𝑟) = 
(0.9829, 0.057; 0.9829, 0.042; 0.9830, 0.0302; 

1.2499, -0.013; 0.9946, -0.04) which doesn’t give 

significant change around −0.1 and give poor value 

in positif sign of ζ. What we need to stress here and 
also for the subsequent models is, these controlling 

parameters are model-based and only give us the 

local solutions. Their alteration behaves 
monotonically in the accepted regions as we can see 

in the graph plots. This is due to the manual search 

and fitting method we have mentioned earlier, used 

in this paper. In the future, we will search another 
sophisticated method to obtain more precise values 

and visualization. 

 

 

 
  

Fig. 1. The accepted value of 𝑛𝑠 (left) in green 

shaded region based on Planck collab. 2018 [27] 

and accepted values of 𝑟 (right) with respect to 

alteration of free parameters 𝑉2 and 𝑚 while 
preserving other parameters. 

 

5.2 Exponential Scalar Function 

For this model, scalar function has the form as below 
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 𝑓 = 𝑒𝑚𝜙  ,               (82) 

 

where m is the power value. Its first and second 
derivatives are 

 

 𝑓′ = 𝑚𝑒𝑚𝜙 , 𝑓′′ = 𝑚2𝑒𝑚𝜙 = 𝑚𝑓′ .       (83) 

 

In this model we also apply where 𝑓′′ ≫ 2𝜉. 
Then the potential scalar is 

𝑉 = 𝑉3 exp [2 ln(|𝑚(𝜁𝜙2 − 1) − 2𝜁𝜙) +

(4𝜁+1) arctan √𝜁(𝑚𝜙−1)𝛼−1 

√𝜁𝛼
 + 𝑐]               (84) 

 

where 𝑉3 and 𝑐 is are integration constants, and 𝛼 =

 √−𝜁 − 𝑚2. We have been using two integration 

constant to both model. This is reasonable as we will 
set either one is zero or neither. Applying to (9) we 

yield 

  

𝐻2 ≃
1

3
𝑉 [

𝑚

(1 − 𝜁𝜙2)𝑚 + 2𝜁𝜙
] 

          

                 (85) 

�̇� ≃ −
𝐻2

2𝑚2(1 − 𝜁𝜙2)
(1 − 2𝑚𝜁𝜙). 

 

Therefore, some of slow roll indices in (61) become 
 

 𝜖 =
1−2𝑚𝜁𝜙

2𝑚2(1−𝜁𝜙2)
 

 

 𝜂 =  −𝜖               (86) 

 

 𝛿𝑄𝑇
=

−2𝜁𝜙+2𝜂𝜉𝐻+𝐻2𝑚(𝑚𝑒2𝑚𝜙−2𝜖𝑒𝑚𝜙)

𝑚(1−𝜁𝜙2)+𝐻(𝜉+𝐻𝑚𝑒𝑚𝜙)
 

 

By setting 𝜖 = 1 we obtain the value of final scalar 

field, 
 

 𝜙𝑓 =
1

𝑚2
(

1+2𝑚

4
−

1−2𝑚2

2𝜁
) .             (87) 

 

Using the same manner as previous model, 

initial scalar field value as follows 
 

 𝜙𝑖 =
𝑚𝜙𝑓−𝑁

𝑚
               (88) 

 
For following free parameters 

value (𝑉3, 𝑁, 𝜁, 𝜉, 𝑚, 𝑐) = (104 , 60, 1, 10−10, 59.2273, 

-11.4242), the obtained observational indices are 

𝑛𝑠 = 0.96412 dan 𝑟 = 0.02071 which are accepted 

to latest Planck data [27], and tensor spectral index is 

𝑛𝑇 = −0.02368 which is nearly scale invariant. 

Initial and final scalar field values are 𝜙𝑖 =

−0.004675 and 𝜙𝑓 = 1.00837, respectively. In this 

model we also obtained relatively small slow-roll 

indices, such as (𝜖, 𝜂, 𝛿𝑄𝑠
 , 𝛿𝑐𝑠

 , 𝛿𝑄𝑇
 , 𝛿𝑐𝑇

 ) = 

(0.0002215, -0.0002215, 1.4037, -0.4561, 0.0232, -

0.0000025). Plot of varied values of 𝑚 and 𝑉2, 

respectively for 𝑛𝑠 dan 𝑟 is presented in figure 4. 

 

  

  
Fig. 2. The accepted value of 𝑛𝑠 (left) in green shaded region 

based on Planck collab. 2018 [27] and accepted values of 𝑟 
(right) with respect to alteration of free parameters ξ and ζ while 

preserving other parameters. 

 
 

Table 1. Values of 𝑛𝑠 and 𝑟 with respect to varying values of 𝑚 

and 𝑉2. 
 

𝒎 𝒏𝒔 𝒓 

10 0.994003 0.000011 
15 0.98431 0.0006088 
25 0.983799 0.00887 

39.5 0.96075 0.02412 
40 0.844069 0.02492 

 
𝒎 𝒏𝒔 𝒓 

1000 0.9913 0.028 
1200 0.9766 0.025 
1300 0.9674 0.024 

1400 0.9571 0.023 
1500 0.9456 0.0228 
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Fig. 3. Plot of 𝑛𝑠 and 𝑟 over varying (a) m within range [39.5, 40.5] and 

(b) 𝑉2 within range [1000, 2000]. We see here that these parameters 

controlling the values of ns and r conveniently. Increasing value of 𝑉2 

give a decreasing value of both 𝑛𝑠 and 𝑟 at increasing rate and decreasing 

rate, respectively. On the other hand increasing value of 𝑚 acts 

differently on 𝑛𝑠 and 𝑟, respectively. As can be seen the prior gives 

decreasing value of 𝑛𝑠 at an increasing rate while the latter gives 

increasing value of 𝑟 at an increasing rate. 

 

  

  
Fig. 4. The accepted value of ns (left) in green shaded region based on 

Planck collab. 2018 [27] and accepted values of r (right) with respect to 

alteration of free parameters m and c while preserving other parameters. 
 

  
After some examination, we realize that the small 

alteration of ξ does not affect the change of 

observational indices, this might happened since we 

applied approachment 𝑓′′ ≫  𝜉. Then we plot varying 

values of 𝑉3 and ζ while preserving other parameters, 

as can be seen in table 2 and figure 5. 

 

Plot of 𝑛𝑠 with respect to 𝑉3 and ζ are presented in 

figure 6. If other parameters are altered then we get 

random values of observational indices. For instance 

if 𝑚 =  (40, 42, 43, 58, 60) then scalar spectral 

index and ratio tensor-to-scalar are (𝑛𝑠 , 𝑟) = 

(0.93876, 2.8632; 0.96158, 2.3016; 0.9716, 2.0576; 

1.4369, 0.0583; -0.5525, 0.0293), we’ve seen here 
the slight change of m around 40 can alter the value 

of ns rigorously but at the same time can not provide 

proper value of r. Furthermore if 𝑐 = (−5, −12, 1) then 

(𝑛𝑠 , 𝑟) = (-0.0230, 4.88097; 1.52720, 0.01825; -

0.000056, 5.3356), which are not expected. However, 
altering ξ tends to not giving any significant change 

of observational indices as long as its value is much 

smaller than one, 𝜉 ≪ 1, when its value is larger than 

one then we do not obtain corresponding value of 
observational indices. For an additional comment, the 

resulted aforementioned example values indicates 

that integration constant 𝑐 has a value rather than 

zero. Thus we can express integration constant of 𝑉 

in equation (84) as 

 

 𝑉3
′ = 𝑉3𝑒𝑐  ,   (89) 

 

where 𝑉3 is the previous integration constant found in 

(84). 

 
Table 2. Values of 𝑛𝑠 and 𝑟 with respect to varying values of ζ and 𝑉3. 

 
𝜻 𝒏𝒔 𝒓 

1 0.9641 0.000011 
1.0001 0.95490 0.0006088 
1.0005 0.91746 0.00887 

1.00001 0.96320 0.02412 
2 2×10−15 5.9084 

 
𝜻 𝒏𝒔 𝒓 

9900 0.9775 0.0206 
10000 0.96412 0.0207 
10010 0.96279 0.02072 
10100 0.95079 0.02081 

11000 0.83318 0.02171 

 

  

  
Fig. 5. The accepted value of 𝑛𝑠 (left) in green shaded region based on 

Planck collab. 2018 [27] and accepted values of 𝑟 (right) with respect to 

alteration of free parameters 𝑉3 and ζ while preserving other parameters. 
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RECTIFICATION OF MODELS ASSOCIATED 

TO APPROXIMATION 

 

 We have mentioned earlier that the 

approximations that have been conducted in the 

theory need to be checked. According to 

previous works (see refs. [14, 24, 12, 13]), this 

has to be done in order to determine the vibility 

of the proposed theory. In the power law model 

we checked that there are several approximations 

do not hold true. For instance, 𝑓̈ ∼ 𝒪(10−2) 

which has value 0.0149 is in the same order with 

𝐻�̇� ∼ 𝒪(10−2 ) and is greater than it with value 

0.0145. So does for 𝐻4𝑓′ ∼ 𝒪(103 ) is the same 

order with 𝑉′ ∼ 𝒪(105) and the last 

approximations which conducted in the 

differential equations of potensial also does not 

hold true where 2𝜉 ∼ 𝒪(10−5) while 𝑓′′ ∼
𝒪(10−5) hence they are in the same order. 

 
 

 
Fig. 6. Plot of 𝑛𝑠 and 𝑟 over varying (a) ζ within range [1, 1.001] 

and (b) 𝑉3 within range [8000, 11000]. We see here that these 

parameters controlling the values of 𝑛𝑠 and 𝑟 conveniently. 

While ζ give a nearly linearly decreasing for both 𝑛𝑠 and 𝑟, on 

the other hand 𝑉3 acts differently on ns and r, respectively. As 

can be seen the latter give a nearly linearly increasing value of 𝑟. 

 

Therefore, these approaches rendered invalid. 

However, to avoid this incompatibility, we have 

carried out cancellation of preferred 

approximation. Here, we choose to not approx 

𝑓̈ ≪ 𝐻�̇� . Consequently, Hubble derivative 

equation in eq. (8) is modified where 

aforementioned aproximations is no longer 

imposed. We choose to cancel this 

approximation because is seems to be the 

simplest one, where we don’t have to modify all 

of equations in theory. Notice that if we modify 

only this Hubble derivative equation, it will 

affect 𝜖 in eq. (61) to form 

  

𝜖 =
1

2(1 − 𝜁𝜙)
[

𝑓′2

𝑓′′2
(1 + 𝑓′′𝐻2)               (90)

− (𝜁𝜙 − 𝐻𝑓′)
𝑓′

𝑓′′
] 

 

and no need to modify other equation in eq. (8). 

Subsequently, the resulting free parameters also 

changed in order to be viable to observation. 

Furthermore we choose (𝜆, 𝑁, 𝑉2, 𝜉, 𝜁, 𝑚, 𝑐) 

=(0.0001, 60, 1000, 10−15, 0.1, 33, 0) to yield 𝑛𝑠 

= 0.9644 and 𝑟 = −0.045 which reconcilable with 

observation. The resulting tensor spectral index 

is 𝑛𝑇 = 0.002 which is nearly scale invariant. The 

slow-roll indices also hold expected result, 

where (𝜖, 𝜂, 𝛿𝑄𝑠
 , 𝛿𝑐𝑠

 , 𝛿𝑄𝑇
 , 𝛿𝑄𝑇

) = (-0.000266, 

0.0315, 0.0635, -0.0091, -0.015, 1.06 × 10−10) 

have very small values. Finally, the other 

approximations hold true when using this new 

approach where �̇� ∼ 𝒪(102) ≪ 𝐻2 ∼

𝒪(105), �̇� ∼ 𝒪(102) ≪ 𝑉 ∼ 𝒪(106), �̈� ∼

𝒪(102) ≪ 𝐻�̇� ∼ 𝒪(104), �̈� ∼ 𝒪(101) ≪
𝐻�̇� ∼ 𝒪(102), �̈� ∼ 𝒪(10−13) ≪ 𝐻�̇� ∼

𝒪(10−11), �̇�𝑓̇ ∼ 𝒪(10−9) ≪ 𝐻2𝑓̇ ∼

𝒪(10−6), 𝐻3𝑓′�̇� ∼ 𝒪(10−3) ≪ 𝑉 ∼
𝒪(106), 𝐻4𝑓′ ∼ 𝒪(10−1) ≪ 𝑉′ ∼

𝒪(105), 𝐻3𝐸′�̇� ∼ 𝒪(10−5) ≪ 𝑉′ ∼ 𝒪(105), 
and 2𝜉 ∼ 𝒪(10−15) ≪ 𝑓′′ ∼ 𝒪(10−11) are all 

hold true. 

 

 In exponential models, several 

approximations also do not hold true. For 

instance �̈� has the same order as 𝐻�̇� , 𝑓̈ has the 

same order to 𝐻𝑓̇ like in power law case, and 

𝐻4𝑓′ ≪ 𝑉′ also does not hold true. In this case, 

we also apply the same manners as in the power 

law case where Hubble derivative equation is 

modified do to cancellation of approximation 

𝑓̈ ≪ 𝐻𝑓̇. For this model we choose these 
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example of free parameters (𝑉1, 𝑁, 𝜁, 𝜉, 𝑚, 𝑐) = 

(10000, 60, 0.1, 10−10 , 350, -330) to yield 𝑛𝑠 = 

0.9649 and 𝑟 = 0.016 in order to be compatible 

with observation values in eq. (60). The resulting 

tensor spectral index is 𝑛𝑇 = −0.000082 which is 

nearly scale invariant. The slow-roll indices 

results are also as expected where 

(𝜖, 𝜂, 𝛿𝑄𝑠
 , 𝛿𝑐𝑠

 , 𝛿𝑄𝑇
 , 𝛿𝑄𝑇

)=(0.000014, -0.000014, 

-0.000022, 0.00117, 0.000040, 0). Finally, the 

approximations have examined and rendered all 

valid, where �̇� ∼ 𝒪(10−145) ≪  𝐻2 ∼

𝒪(10−140), �̇� ∼ 𝒪(10−146) ≪  𝑉 ∼

𝒪(10−140), �̈� ∼ 𝒪(10−148) ≪ 𝐻�̇� ∼
𝒪(10−143), �̈� ∼ 𝒪(10−146) ≪  𝐻�̇� ∼
𝒪(10−145), �̈� ∼ 𝒪(10−158) ≪   𝐻�̇� ∼

𝒪(10−153), �̇�𝑓̇ ∼ 𝒪(10−226) ≪   𝐻2𝑓̇ ∼

𝒪(10−221), 𝐻3𝑓′�̇� ∼ 𝒪(10−291) ≪  𝑉 ∼
𝒪(10−140), 𝐻4𝑓′ ∼ 𝒪(10−288) ≪  𝑉′ ∼

𝒪(10−141), 𝐻3𝐸′�̇� ∼ 𝒪(10−293) ≪  𝑉′ ∼
𝒪(10−141), 𝑎𝑛𝑑 2𝜉 ∼ 𝒪(10−10) ≪ 𝑓′′ ∼
𝒪(10 − 6 ) are all hold true. 

 

 

ON THE VIOLATION OF NULL ENERGY 

CONDITION (NEC) 

 

 In the standard single-field slow-roll 

model of inflation, the power spectrum for the 

tensor perturbation is parametrized by a power-

law [28] 

 

 𝒫𝑇
𝑣𝑎𝑐 = 𝐴𝑇   (

𝑘

𝑘0
)

𝑛𝑇

   ,            (91) 

 

where AT is the amplitude. It is showed that on 

the superhorizon scale, 𝑘 ≪ 𝑘0 = 𝑎𝐻, the power 

spectrum is almost scale invariant that all the 

GW productions have all the same amplitude 

[21]. This means that almost all gravitational 

waves produced at that scale are ”frozen”. In 

addition, standard single-field slow-roll model 

possess 

 

 𝑛𝑇 = −2𝜖             (92) 

 

then the tensor spectral index must be negative, 

𝑛𝑇 < 0, so that �̇� ≪ 0 to satisfy Null Energy 

Condition (NEC) [29]. In this case, the spectrum 

is named red, whereas if 𝑛𝑇 > 0 is called blue 

and 𝑛𝑇 = 0 is called scale invariant [21]. The 

standard inflation theory, namely slow-roll 

inflation which only has a scalar field term and 

Einstein-Hilbert only produces a red spectrum 

𝑛𝑇 < 0, which can be seen from the eq. (92). 

Since 𝜖 > 0 for �̇� ≪ 0, does not arise from this 

theory [21, 30, 23]. On the other hand, 

Horndeski’s theory has the advantage that the 

resulting spectral index allows the blue spectral 

[21, 30], without NEC violations, in contrast to 

the case of the standard slow-roll mentioned 

earlier [21]. This can be done by applying 2𝜖 +
 𝛿𝑄𝑇

+ 𝛿𝑐𝑇
< 0 to the eq. (51) but still retaining 

the condition 𝜖 > 0 which also means 𝐻 < 0 

according to the inflation scenario, so this does 

not violate the NEC, see also ref. [21]. 

 

Then, our result in section 6, the rectified power 

law model is violating NEC when using 

corresponding given free parameters value since 

they produce negative . We can search another 

region in which accepted observational 

quantities are laying. We found that altering 

some free parameters’ values leads to non-

violated NEC regions. For example if 

(𝜆, 𝑁, 𝑉2, 𝜉, 𝜁, 𝑚, 𝑐) = (0.0001, 60, 1000, 10−15, -

0.1, 16.5, 0), the obtained observational indices 

are 𝑛𝑠 = 0.9649 dan 𝑟 = 0.0019 which are 

accepted to latest Planck data [27], and tensor 

spectral index is 𝑛𝑇 = −0.0000023635 which 

is nearly scale invariant and has red spectrum. As 

can be seen here, we obtain positive , hence it 

does not violating NEC. Notice that the only 

difference of these free parameters with the 

previous one in sec. 6 is the ζ value. We only 

alter its sign while preserving the other values 

and we get the new region which is acceptable to 

observation and does not violating NEC. This is 

an interesting feature because there might be 

significant characteristic about this non-minimal 

coupling term 

 

This discussion raises the question ”why is the 

blue spectral index?”. Gravitational waves are 

thought to be the source of the CMB-mode 

polarization on a large scale [31, 23], thus if this 

mode is detected then the spectral index of 

gravitational waves can be obtained. This mode 

is very weak on a large scale, while on a small 

scale it could appear from the gravitational lens 

[23]. However, the spectral index nT can be 
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positive (blue) in some ranges as observed in the 

BB BICEP2 spectrum [23, 31]. 

 

Up until now, the detection of primordial 

gravitational waves has been difficult. Due to the 

weak gravitational interaction, gravitational 

waves cannot interact with the surrounding 

media, thus gravitational waves decoupled and 

propagated freely in the universe after they were 

produced until now [33]. In contrast to the CMB 

which releases at energy about 0.3 eV, the 

primordial gravitational waves are expected to 

escape at a very high energy scale 

(approximately the Planck scale) [33]. In 

addition, since the amplitude is very small, the 

presence of astrophysical objects, galactic dust 

and gravitational lensing make this signal even 

more difficult to be detected [33]. Currently, 

there is no detection of the primordial 

gravitational wave signal [33, 24, 30, 21]. 

 

According to [36], the challenge for 

experimental researchers is not only to detect the 

spectrum of gravitational waves via B-mode 

polarization but also from the spectral slope. If 

the result gives a blue spectrum, the inflation 

theory which gives a red spectrum can be 

excluded. The solutions are whether to use 

another alternative theory, namely the 

superstring theory which always produces a blue 

spectrum [36] or to use the inflation theory 

which allows the emergence of a blue spectrum 

index, for example Horndeski’s theory that have 

been used in this study. The search for an 

inflation model that produces a primordial tensor 

fluctuation power spectrum with blue tilt and is 

consistent with the latest cosmological 

observations turns out to be an interesting thing 

[30]. Some work on this subject is can be seen in 

refs. [36, 30, 21, 23]. 

 

For the future research, we could dig deeper 

about the obtained sign of  for each model and 

associating it to energy scale. We also can check 

the option to consider effective value of e-fold 

which can be checked in refs. [21, 32]. The blue 

or red tensor spectral is also become an 

interesting consideration. The NEC violation in 

some region is appealing to be pondered further, 

whether there exist some special features in the 

preferred regime. For example its relation to 

signature of quantum gravity (see, e.g. [39]). 

Futher review about this topic can be checked in 

refs. [37, 38, 39]. Additionally, we can check 

about the non-gaussianities in the model we’ve 

proposed. 

 

 

CONCLUSION 

 

 In conjunction with GW170817 event, 

some of modified gravity (MG) theories were 

disqualified including Einstein-Gauss-Bonnet 

theory. We added two more couplings to the 

action, NMC and NMDC, with some 

considerations as we have discussed in section 1 

and we have showed in this work, the theory still 

can be manageable to fit in. Furthermore, we 

exploit Horndeski theory when considering 

perturbations dynamics. Then we obtained the 

constraint eq. (55) after applying 𝑐𝑇 = 1. 
 

Two models of Gauss-Bonnet scalar coupling 

function has been evaluated in this framework 

within slow-roll approximations. Then we got 

equations for potential by solving differential eq. 

(58). In these models, 𝑓′′ ≫  𝜉 approach was 

applied to avoid non linearity and turned out not 

valid on power law model. Some 

approximations, including the aforementioned 

one, that have been conducted do not hold true. 

Hence we rectified the models by no longer 

applying 𝑓̈𝜉 ≪ 𝐻𝑓̇  in the background equation 

of motion. Consequently, Hubble derivative 

equation in eq. (8) was altered and also changed 

equation for . Then we repeated the process to 

find the suitable free parameters in order to be 

compatible to the latest Planck 2018 observation. 

 

As we can see in section 5, each form of scalar 

function affects the free parameters differently 

thus the behaviour of each dynamic acts 

peculiarly in resulting observational indices. 

Nevertheless we obtained the regimes which 

coincides with expected observational value of 

ns in green shaded region based on eq. (60) as 

can be seen in figures [1-5]. We searched 

aforementioned regimes by varying several free 

parameters. In the end some free parameters are 

being in control to change observational indices’ 

values conveniently, while some others could 

result poor value of observational indices as can 
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be seen in section 5. This is an interesting fact to 

be reviewed more in the future. We can dig 

deeper about how important these coupling 

constant to create some features in inflationary 

scenario. Nevertheless, since we searched the 

accepted region ”manually” hence followed by 

the parameters, these controlling parameters are 

model-based and only give us the local solutions. 

In the future, we will search another 

sophisticated method to obtain more precise 

values and visualization. 

 

We also discovered that the rectified power law 

model is in violation of the NEC where the 

obtained is negative. Then we try to find another 

region with no NEC violations. As a result, both 

scenarios are provided. 

 

Furthermore, in terms of tensor spectral index, 

we obtain a nearly scale invariant value as 

expected since the RHS of eq. (51) were 

approximated small. We obtain blue spectrum 

tensor spectral index, 𝑛𝑇 > 0, in rectified power 

law model but at the same time violating NEC. 

The rest of the models have a red spectrum and 

at the same time do not violating NEC since 𝜖 >
 0. 
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