
 
Indonesian Journal of Physics 
Vol. 33. No.1, 17 October 2022 
Journal homepage: http://ijphysics.com 

 

 

 

Compatibility of Einstein-Gauss-Bonnet Inflation 

Theory with Non-Minimal Derivative Coupling in the 

Constant-Roll 
 

N A Adam1*, G Hikmawan1, F P Zen1,2 
1Theoretical Physics Division, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia 

2Indonesia Center for Theoretical and Mathematical Physics (ICTMP), Jl. Ganesha 10 Bandung 40132, Indonesia 

 
( Received: 28 February 2022, Revised: 30 May 2022, Accepted: 11 October 2022 ) 

 
 

 

Abstract 

Inflation is a theory in cosmology that explains that the early universe experienced a very fast expansion in a very short 

time and is able to explain some cosmological problems and the presence of gravitational waves generated during the 

inflation period. Based on the event GW170817, it was found that 𝑐𝑡
2  = 1, which indicates that the speed of gravitational 

waves is nearly equal to the speed of light. This contradicts several modified theories of gravity, one of which is the 

Einstein-Gauss-Bonnet theory. This paper examines the compatibility of Einstein-Gauss-Bonnet inflation theory with the 

GW170817 phenomenon, with the addition of the non-minimal derivative coupling term and the constant-roll approach 

and its characteristics. The formulation of observational quantities is carried out using Horndeski theory and Effective Field 

Theory with ADM formalism and the calculations are done numerically. The constant values are selected in such a way 

that the spectral index values and tensor-scalar ratios are close to the 2018 Planck data. The results found that this theory 

is compatible with GW170817 with the influence of Gauss-Bonnet term and constant-roll parameter 𝛽 most dominant. 

 

Keywords: Constant-roll, Einstein-Gauss-Bonnet, GW170817, Inflation, Non-minimal derivative coupling. 

 

 

INTRODUCTION
1*

 
 

The neutron star merger that produces 

GW170817 provides information that gravitational 
wave has a speed almost the same as electromagnetic 

radiation that produced by itself [1]. This fact states 

that the speed of gravitational waves is almost the 

same as the speed of light (𝑐𝑡
2 = 1). Unfortunately, 

this fact also contradicts some of the generalized 
theories of Einstein's theory of gravity that do not 

predict massless graviton, one of them is Einstein-

Gauss-Bonnet [2]. 
 

Einstein-Gauss-Bonnet theory is the theory 

that is believed to be a theory that is able to explain 

the era of inflation and several other primordial 
astrophysical objects because this theory is motivated 

by string theory. Several studies on Gauss-Bonnet 

compatibility with GW170817 have been done, and 
one of them is by using the constant-roll evolution 

[3]. The constant-roll is known to enhance the non-

Gaussianities features [4]. The results indicate that 

 
1* Corresponding author. 

Gauss-Bonnet with constant-roll is compatible with 
GW170817 and Planck 2018 data.  

 

Another study for this case is to add non-

minimal derivative coupling (NMDC) in slow-roll 
evolution [5] and the results of this study also indicate 

that this model is compatible with GW170817 and 

Planck 2018 data. The presence of the NMDC allows 
inflationary attractors to exist and they can be used to 

apply a primordial phase transition model with an 

extended inflation scheme [6]. 
 

Those studies motivated the author to work on 

a gravitational wave based on the Gauss-Bonnet 

inflation model with NMDC on constant-roll and 
check its compatibility with GW170817. The 

presence of two arbitrary coupling functions that 

depend on the scalar fields makes it possible to obtain 
several varied solutions. 

 

 
GENERAL FORMULATION OF EINSTEIN-

GAUSS-BONNET INFLATION THEORY 

   E-mail address: naufal.auliadam@gmail.com 
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WITH NON-MINIMAL DERIVATIVE 

COUPLING IN THE CONSTANT-ROLL 
 

 Non-minimal derivative coupled Einstein-

Gauss-Bonnet theory can be described by the 

gravitational action 
 

𝑆 = ∫ 𝑑4 𝑥√−𝑔 [
𝑅

2𝜅2
−

1

2
(𝛻𝜙)2 +

1

8
𝑓1(𝜙)𝑅𝐺𝐵

2

+ 𝑓2(𝜙)𝐺𝜇𝜈𝜙;𝜇𝜈 − 𝑉(𝜙)] 

      (1) 

 

where 𝜅 =
1

𝑀𝑃
≡ 1 as gravitational constant with 𝑀𝑃  

denotes the reduced Planck mass, 𝑉(𝜙) is scalar 

potential, and 𝐺𝜇𝜈  is Einstein tensor. 𝑅𝐺𝐵
2  is Gauss-

Bonnet invariant that can be described as 

 

𝑅𝐺𝐵
2 = 𝑅2 − 4𝑅𝛼𝛽𝑅𝛼𝛽 + 𝑅𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿  

      (2) 
 

with 𝑅𝛼𝛽 and 𝑅𝛼𝛽𝛾𝛿 as Ricci tensor and Riemann 

tensor. Coupling function 𝑓1(𝜙) denotes the Gauss–

Bonnet coupling scalar function and 𝑓2(𝜙) denotes 
the non-minimal derivative coupling function. By 

varying the gravitational action (1) we get the field 

equations 
 

3𝐻2 =
1

2
(𝜙̇)

2
+ 𝑉(𝜙) − 3𝑓1

(1)(𝜙)𝜙̇𝐻3

− 9𝑓2
(1)(𝜙)(𝜙̇)

2
𝐻2 

            

           (3.a) 
 

−2𝐻̇ = (𝜙̇)
2

− 𝑓1
(1)(𝜙)𝜙̇𝐻3 + 2𝑓1

(1)(𝜙)𝜙̇𝐻𝐻̇

+ 𝑓1
(1)(𝜙)𝜙̈𝐻2 + 𝑓1

(2)(𝜙)(𝜙̇)
2

𝐻2

− 6𝑓2
(1)(𝜙)(𝜙̇)

2
𝐻2

+ 4𝑓2
(1)(𝜙)𝜙𝜙̇̈𝐻

+ 2𝑓2
(1)(𝜙)(𝜙̇)

2
𝐻̇

+ 2𝑓2
(2)(𝜙)(𝜙̇)

3
𝐻 

 

           (3.b) 

 

𝑉(1)(𝜙) + 3𝐻𝜙̇ + 𝜙̈

= 3𝑓1
(1)(𝜙)𝐻2(𝐻̇ + 𝐻2)

+ 3𝑓2
(2)(𝜙)(𝜙̈)

2
𝐻2

+ 6𝑓2
(1)(𝜙)𝜙̈𝐻2 + 18𝑓2

(1)(𝜙)𝜙̇𝐻3

+ 12𝑓2
(1)(𝜙)𝐻𝐻̇ 

 
           (3.c) 

 

where 𝑉(1)(𝜙) is the first derivative of 𝑉(𝜙) with 

respect to scalar field  𝜙. Constant-roll condition 

provides 

 

𝐻̇ ⋘ 𝐻2 
                (4.a) 

 
1

2
(𝜙̇)

2
⋘ 𝑉(𝜙) 

           (4.b) 
 

𝜙̈ = 𝛽𝐻𝜙̇ 

                (4.c) 
 

with 𝑓1(𝜙) ≪ 1 and 𝑓2(𝜙) ≪ 1 so (3) can be 

simplified as 
 

𝐻2 ≃
1

3
𝑉(𝜙) 

                (5.a) 

 

𝐻̇ ≃ −
1

2
(𝜙̇)

2
 

                (5.b) 

 

𝑉(1)(𝜙) + (3 + 𝛽)𝐻𝜙̇ ≃ 0. 
                (5.c) 

 
The explicit aim of this paper is to calculate the 

observational quantities such as spectral indices and 

tensor-to-scalar ratio from selected models and 
compare them with the Planck 2018 data. The next 

step is to calculate the perturbation of (1) to obtain 

the formulation of the observational quantities. 

Perturbation of (1) can be formulated with ADM 
formalism using Horndeski theory [7]. The 

Lagrangian of Horndeski is defined as 

 

𝐿 = ∑ 𝐿𝑖

5

𝑖=2

, 

    (6) 

 
with 

 

𝐿2 = 𝐺2(𝜙, 𝑋), 
                (7.a) 
 

𝐿3 = 𝐺3(𝜙, 𝑋)⎕𝜙, 
           (7.b) 

 

𝐿4 = 𝐺4(𝜙, 𝑋)𝑅 − 2𝐺4𝑋(𝜙, 𝑋)[(⎕𝜙)2 − 𝜙;𝜇𝜈𝜙;𝜇𝜈] 

                 

           (7.c) 
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𝐿4 = 𝐺4(𝜙, 𝑋)𝑅
− 2𝐺4𝑋(𝜙, 𝑋)[(⎕𝜙)2 − 𝜙;𝜇𝜈𝜙;𝜇𝜈], 

            

           (7.d) 
 

𝐿5 = 𝐺5(𝜙, 𝑋)𝐺𝜇𝜈𝜙;𝜇𝜈

+
1

3
𝐺5𝑋(𝜙, 𝑋)[(⎕𝜙)3

− 3(⎕𝜙)𝜙;𝜇𝜈𝜙;𝜇𝜈

+ 2𝜙;𝜇𝜈𝜙;𝜇𝜎𝜙;𝜎
;𝜈]. 

 

           (7.e) 

 

Here 𝐺𝑖(𝑖 = 2,3,4,5) in (5) are functions that 

depends on scalar field 𝜙 and its kinetic energy 𝑋 =
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈 with 𝐺𝑖𝑋 ≡ 𝜕𝐺𝑖/𝜕𝑋 and 𝐺𝑖𝜙 ≡ 𝜕𝐺𝑖/𝜕𝜙 

are partial derivatives of Gi. According to (7), (1) can 

be rewritten as 
 

𝐺2 = −
𝑋

2
− 𝑉(𝜙) +

1

4
𝑓1

(4)(𝜙)𝑋2 [3 − 𝑙𝑛 (−
𝑋

2
)], 

 
           (8.a) 

 

𝐺3 = −
1

4
𝑓1

(3)(𝜙)𝑋 [7 − 3 𝑙𝑛 (−
𝑋

2
)], 

 
           (8.b) 

 

𝐺4 =
1

2
−

1

2
𝑓1

(2)(𝜙)𝑋 [2 − 𝑙𝑛 (−
𝑋

2
)], 

 
           (8.c) 

 

𝐺5 = −
1

2
𝑓1

(1)(𝜙) 𝑙𝑛 (−
𝑋

2
) + 𝑓2(𝜙). 

  

           (8.d) 

 
General slow-roll parameter is defined as 

 

ϵ ≡ −
𝐻̇

𝐻2
 

(9) 
 

and constant-roll condition provides another slow-

roll parameter as 
 

𝛽 = −
𝜙̈

𝐻𝜙̇
 

            (10) 
 

which is also a constant-roll parameter. ADM 

formalism also provides four additional slow-roll 

parameters as 

 

δ𝑄𝑠
≡

𝑄𝑠
̇

𝐻𝑄𝑠
, 

         (11.a) 

 

δ𝑄𝑡
≡

𝑄𝑡
̇

𝐻𝑄𝑡
, 

         (11.b) 
 

δ𝑐𝑠
≡

𝑐𝑠̇

𝐻𝑐𝑠
, 

         (11.c) 

 

δ𝑐𝑡
≡

𝑐𝑡̇

𝐻𝑐𝑡
 

         (11.d) 

 

with 
 

𝑄𝑠 ≡
2𝐿𝒮

3𝒲2
(9𝒲2 + 8𝐿𝒮𝑤), 

         (12.a) 

 

𝑐𝑠
2 ≡

2

𝑄𝑠
(ℳ̇ + 𝐻ℳ − ℰ), 

         (12.b) 

 

𝑄𝑡 ≡
𝐿𝒮

2
, 

         (12.c) 

 

𝑐𝑡
2 ≡

ℰ

𝐿𝒮
 

         (12.d) 

 

where 
 

𝐿𝒮 = 𝐺4 − 2𝑋𝐺4𝑋 − 𝐻𝜙̇𝑋𝐺5𝑋 −
1

2
𝑋𝐺5𝜙, 

          

         (13.a) 

 

ℰ = 𝐺4 +
1

2
𝑋𝐺5𝜙 − 𝑋𝐺5𝑋𝜙̈, 

         (13.b) 
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𝑤 = −18𝐻2𝐺4 + 3(𝑋𝐺2𝑋 + 2𝑋2𝐺2𝑋𝑋)

− 18𝐻𝜙̇(2𝑋𝐺3𝑋 + 𝑋2𝐺3𝑋𝑋)

− 3𝑋(𝐺3𝜙 + 𝑋𝐺3𝜙𝑋)

+ 18𝐻2(7𝑋𝐺4𝑋 + 16𝑋2𝐺4𝑋𝑋

+ 4𝑋3𝐺4𝑋𝑋𝑋)

− 18𝐻𝜙̇(𝐺4𝜙 + 5𝑋𝐺4𝜙𝑋

+ 2𝑋2𝐺4𝜙𝑋𝑋)

+ 6𝐻3𝜙̇(15𝑋𝐺5𝑋 + 13𝑋2𝐺5𝑋𝑋

+ 2𝑋3𝐺5𝑋𝑋𝑋)

+ 9𝐻2𝑋(6𝐺5𝜙 + 9𝑋𝐺5𝜙𝑋

+ 2𝑋2𝐺5𝜙𝑋𝑋), 

         (13.c) 

 

𝒲 = 4𝐻𝐺4 + 2𝜙̇𝑋𝐺3𝑋 − 16𝐻(𝑋𝐺4𝑋 + 𝑋2𝐺4𝑋𝑋)

+ 2𝜙̇(𝐺4𝜙 + 2𝑋𝐺4𝜙𝑋)

− 2𝐻2𝜙̇(5𝑋𝐺5𝑋 + 2𝑋2𝐺5𝑋𝑋)

− 2𝐻𝑋(3𝐺5𝜙 + 2𝑋𝐺5𝜙𝑋), 

          

         (13.d) 
 

ℳ =
4𝐿𝒮

2

𝒲
. 

         (13.e) 

 
Equations (11) came from our assumption about 

small variations of (12) since Hubble parameter  H  is 

nearly constant during inflation. The conditions for 

the avoidance of the ghost and Laplacian instability 

are given by 𝐿𝒮 > 0 and ℰ > 0 for tensor 

perturbation cases and 𝑄𝑠 > 0 and 𝑐𝑠
2 > 0 for scalar 

perturbation cases [8]. Observational quantities such 
as spectral indices and tensor-to-scalar ratios can be 

formulated as 

 

𝑛𝑠 = 1 − 2ϵ − δ𝑄𝑠
− 3δ𝑐𝑠

, 

         (14.a) 
 

𝑛𝑡 = −2ϵ − δ𝑄𝑡
− 3δ𝑐𝑡

, 

         (14.b) 

 

𝑟 = 4
𝑄𝑠𝑐𝑠

3

𝑄𝑡𝑐𝑡
3 

         (14.c) 

 

with 𝑛𝑠  as scalar spectral index, 𝑛𝑡  as tensor spectral 

index, and 𝑟 as tensor-to-scalar ratio. Both of spectral 

indices 𝑛𝑠  and 𝑛𝑡  are the parameter that describes the 

nature of primordial density perturbations, where 𝑛𝑠 

represents scalar fluctuations, 𝑛𝑡  represents tensor 

fluctuations, and 𝑟 represents ratio of their power 

spectra. We refer readers to [7] for how to derive 

(11)-(14) and more detailed explanations. Condition 

𝑐𝑡
2 = 1 can be implemented to (1), (13.a), and (13.b) 

so we get 

 

𝜙̇ =
𝑓1

(1)(𝜙)(1 − 𝛽)𝐻

𝑓1
(2)(𝜙) − 2𝑓2

(1)(𝜙)
. 

            (15) 
 

The value of scalar field  𝜙 in this paper uses the 

initial value of scalar field 𝜙𝑖, which is the value of 

the scalar field at the beginning of inflation. This 
quantity can be formulated from the e-foldings 

number  𝑁 , defined as 

 

𝑁 = ∫
𝐻

𝜙̇

𝜙𝑓

𝜙𝑖

𝑑𝜙 

            (16) 

 

where 𝜙𝑓 is the final value of scalar field which is the 

value of the scalar field at the end of inflation that can 

be formulated by equating slow-roll parameter (9) 

 𝜖 = 1 . 
 

 
SPECIFIC MODELS OF EINSTEIN-GAUSS-

BONNET INFLATION THEORY WITH NON-

MINIMAL DERIVATIVE COUPLING IN THE 

CONSTANT-ROLL 
 

In this paper, we construct eight models based 

on variations of 𝑓1(𝜙) and 𝑓2(𝜙). Derivation of 
equations is done analytically by hand, while 

calculations and contour plots are done numerically 

by MATLAB. 

 

Model I: Linear 𝒇𝟏(𝝓) and Quadratic 𝒇𝟐(𝝓) 
 

In this model we defined 

 

𝑓1(𝜙) = 𝜆𝜙, 
         (17.a) 

 

𝑓2(𝜙) = 𝜎𝜙2 

         (17.b) 

 

where  𝜆 and  𝜎 are the arbitrary constants for 

coupling functions. We apply (17) to (5.c) and (15) 

so the scalar potential can be written as 

 

𝑉(𝜙) = 𝑉0 𝑒𝑥𝑝 [
(3 + 𝛽)(1 − 𝛽)𝜆

12𝜎
] 

          
            (18) 
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where 𝑉0 is the constant for scalar potential. Next, we 

use  𝜖 = 1  from (5.a), (5.b), and (9) to find the 

equation of the final value of a scalar field, 

 

𝜙𝑓 = ±
𝜆(1 − 𝛽)

4√2𝜎
 

            (19) 
 

where we always use the positive value of scalar 

fields. The equation of the initial value of a scalar 
field can be derived from (16) so it can be written as 

 

𝜙𝑖 = √𝜙𝑓
2 +

𝑁(1 − 𝛽)𝜆

2𝜎
. 

            (20) 

 

Furthermore, the spectral indices and tensor-to-scalar 
ratio can be calculated using the equations that have 

been derived previously. Calculations are performed 

numerically using MATLAB. The constant values 

are made in such a way that the scalar spectral index 
and tensor-scalar ratio values are close to the values 

in the 2018 Planck data as [9] 

 

𝑛𝑠 = 0.9649 ± 0.0042, 
         (21.a) 

 

𝑟 <  0.064. 
         (21.b) 

 

Constant values and calculation results for this model 
can be seen in Table 1 and the contour plot can be 

seen in Fig. 1-2. 

 
Table 1.  Constant values and calculation results of Model I. 
 

Quantity Value 

 𝜆 −8 × 10−7 

 𝜎 −2 × 10−6 

𝛽 0.01 

𝑁 60 

𝑉0 20 

𝜙𝑓 0.07000 

𝜙𝑖 3.44745 

𝑛𝑠 0.96489 

𝑛𝑡 −0.00329 

𝑟 0.02633 

𝜙2̇  0.08372 

𝑉(𝜙) 76.14935 

𝐻̇ −0.04186 

𝐻2 25.38312 

𝑓1(𝜙) −2.75 × 10−6 

𝑓2(𝜙) −2.37 × 10−5 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 0.00165 

𝑐𝑠
2 0.99784 

 

It can be seen in Table 1 that the value of the scalar 

field decreases. In addition, 𝐻̇ ≪ 𝐻2 and 𝜙2̇ /2 ≪
𝑉(𝜙) so that it satisfies the condition of constant-roll. 

The values of 𝐿𝒮 , ℰ, 𝑄𝑠 , 𝑐𝑠
2 > 0, so that the conditions 

for avoiding ghost and Laplacian instability are met 

and the value of the scalar propagation speed is close 

to the speed of light (𝑐𝑠
2 ≈ 1). 

 

 
Fig. 1. Contour plots of ns on model I. 

 
Fig. 2. Contour plots of 𝑟 on model I. 

We have provided two contour graphs for the values 

of 𝑛𝑠 and  𝑟  by selecting the constant-roll  𝛽 as the 

 𝑥  coordinates and the Gauss-Bonnet coupling 

constants  𝜆 as the  𝑦  coordinates. This selection is 

based on the frequent occurrence of the two constants 

in the equations. It can be seen that the contour lines 

of ns are drawn vertically indicating that its value is 

more influenced by  𝛽. 

 

Model II: Linear 𝒇𝟏(𝝓) and Qubic 𝒇𝟐(𝝓) 
 

In this model we defined 
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𝑓1(𝜙) = 𝜆𝜙, 
         (22.a) 

 

𝑓2(𝜙) = 𝜎𝜙3. 
                       (22.b) 
 

Derivation of the equations for this model is done in 

the same way as the previous model. The scalar 
potential can be written as 

 

𝑉(𝜙) = 𝑉0 𝑒𝑥𝑝 [−
(3 + 𝛽)(1 − 𝛽)

18𝜙
]. 

 

            (23) 

 
The equation of the final value of a scalar field is 

 

𝜙𝑓 = √±
𝜆(1 − 𝛽)

6√2𝜎
 

            (24) 

 

so the equation of the initial value of a scalar field can 
be written as 

 

𝜙𝑖 =
𝜆(1 − 𝛽)𝜙𝑓

𝜆(1 − 𝛽) − 6𝜎𝑁𝜙𝑓
. 

            (25) 
 

Constant values and calculation results for this model 

can be seen in Table 2 and the contour plot can be 
seen in Fig, 3-4. 

 
Table 2.  Constant values and calculation results of Model II. 
 

Quantity Value 

 𝜆 −1 × 10−7 

 𝜎 −4.25 × 10−12 

𝛽 0.01 

𝑁 60 

𝑉0 25 

𝜙𝑓 52.39502 

𝜙𝑖 2.75388 × 102 

𝑛𝑠 0.96453 

𝑛𝑡 −0.00262 

𝑟 0.02095 

𝜙2̇  0.02182 

𝑉(𝜙) 24.98497 

𝐻̇ −0.01091 

𝐻2 8.32832 

𝑓1(𝜙) −2.75388 × 10−5 

𝑓2(𝜙) −8.87615 × 10−5 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 0.00131 

𝑐𝑠
2 0.99974 

 

 
Fig. 3. Contour plots of ns on model II. 

 
Fig. 4. Contour plots of  r on model II. 

 

It can be seen in Table 2 that the value of the scalar 
field in this model is increases and the rest of the 

values satisfy the condition for constant-roll and 

avoiding ghost and Laplacian instability. Fig. 2-3 

show that it is possible to apply the slow-roll 

condition (𝛽 = 0) with some minor changes in  𝜆 and 

the contour lines of  𝑟  are slightly horizontal 

indicating that 𝑟 is more influenced by 𝜆. 
 

Model III: Quadratic 𝒇𝟏(𝝓) and Zero 𝒇𝟐(𝝓) 
 

In this model we defined 

 

𝑓1(𝜙) = 𝜆𝜙, 
         (26.a) 

 

𝑓2(𝜙) = 0. 
                       (26.b) 

 
Derivation of the equations for this model is done in 

the same way as the previous model. The scalar 

potential can be written as 
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𝑉(𝜙) = 𝑉0 𝑒𝑥𝑝 [−
(3 + 𝛽)(1 − 𝛽)

6
𝜙2]. 

 

            (27) 
 

The equation of the final value of a scalar field is 

 

𝜙𝑓 = ±
√2

(1 − 𝛽)
 

            (28) 

 

so the equation of the initial value of a scalar field can 

be written as 
 

𝜙𝑖 = 𝜙𝑓[𝑒𝑥𝑝((1 − 𝛽)𝑁)]
−1

. 

            (29) 

 
Constant values and calculation results for this model 

can be seen in Table 3 and the contour plot can be 

seen in Fig. 5-6. 

 
Table 3.  Constant values and calculation results of Model III. 
 

Quantity Value 

 𝜆 −1.09 

 𝜎 0 

𝛽 0.92 

𝑁 60 

𝑉0 0.09 

𝜙𝑓 17.67766 

𝜙𝑖 0.14548 

𝑛𝑠 0.96433 

𝑛𝑡 −2.48386 × 10−5 

𝑟 0.00108 

𝜙2̇  4.05923 × 10−6 

𝑉(𝜙) 0.08990 

𝐻̇ −2.02961 × 10−6 

𝐻2 0.02996 

𝑓1(𝜙) −0.02307 

𝑓2(𝜙) 0 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 6.77454 × 10−5 

𝑐𝑠
2 0.99988 

 

 
Fig. 5. Contour plots of 𝑛𝑠 on model III. 

 
Fig. 6. Contour plots of  𝑟 on model III. 
 
It can be seen in Table 3 that the value of the scalar 

field in this model is increases and the rest of the 

values satisfy the condition for constant-roll and 
avoiding ghost and Laplacian instability. Fig. 5-6 

show the contour lines of  r  are slightly vertical 

indicating that 𝑟 is more influenced by 𝛽. Since  𝛽 >
0.9 , it might be impossible to apply a slow-roll 
condition for this model. 

 

Model IV: Quadratic 𝒇𝟏(𝝓) and Linear 𝒇𝟐(𝝓) 
 

In this model we defined 

 

𝑓1(𝜙) = 𝜆𝜙2, 
         (30.a) 

 

𝑓2(𝜙) = 𝜎𝜙. 
         (30.b) 

 

Derivation of the equations for this model is done in 

the same way as the previous model. The scalar 
potential can be written as 

 

𝑉(𝜙) = 𝑉0 𝑒𝑥𝑝 [−
(3 + 𝛽)(1 − 𝛽)𝜆

6(𝜆 − 𝜎)
𝜙2]. 
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            (31) 
 

The equation of the final value of a scalar field is 

 

𝜙𝑓 = ±
√2(𝜆 − 𝜎)

𝜆(1 − 𝛽)
 

            (32) 
 

so the equation of the initial value of a scalar field can 

be written as 

 

𝜙𝑖 = 𝜙𝑓 [𝑒𝑥𝑝 (
(1 − 𝛽)𝜆𝑁

𝜆 − 𝜎
)]

−1

. 

            (33) 

 

Constant values and calculation results for this model 

can be seen in Table 4 and the contour plot can be 
seen in Fig. 7-8. 

 
Table 4.  Constant values and calculation results of Model IV. 
 

Quantity Value 

 𝜆 −0.005 × 10−5 

 𝜎 0.01 × 10−4 

𝛽 6.5 × 10−3 

𝑁 60 

𝑉0 0.5 

𝜙𝑓 29.89278 

𝜙𝑖 1.74900 

𝑛𝑠 0.96424 

𝑛𝑡 −0.00684 

𝑟 0.05476 

𝜙2̇  0.00106 

𝑉(𝜙) 0.46502 

𝐻̇ −5.30643 × 10−4 

𝐻2 0.15500 

𝑓1(𝜙) −1.52950 × 10−7 

𝑓2(𝜙) 1.74900 × 10−6 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 0.00342 

𝑐𝑠
2 0.99985 

 

 
Fig. 7. Contour plots of 𝑛𝑠 on model IV. 

 
Fig. 8. Contour plots of  𝑟 on model IV. 
 
It can be seen in Table 4 that the value of the scalar 

field in this model is increases and the rest of the 

values satisfy the condition for constant-roll and 
avoiding ghost and Laplacian instability. Fig. 7-8 

show that the contour lines of 𝑛𝑠 are slightly vertical 

indicating that its value is more influenced by 𝛽 while 

the contour lines of 𝑟 are slightly horizontal 

indicating that its value is more influenced by 𝜆. 

Since the values of 𝑛𝑠 and 𝑟 are rapidly changing due 

to the changes of values of 𝛽 and 𝜆, it might be 
impossible to apply a slow-roll condition for this 

model. 

 

Model V: Quadratic 𝒇𝟏(𝝓) and Quadratic 𝒇𝟐(𝝓) 
 

In this model we defined 

 

𝑓1(𝜙) = 𝜆𝜙2, 
         (34.a) 

 

𝑓2(𝜙) = 𝜎𝜙2. 
         (34.b) 

 

Derivation of the equations for this model is done in 

the same way as the previous model. The scalar 
potential can be written as 
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𝑉(𝜙) = [
𝜆 − 2𝜎𝜙

𝜆
]

𝑚

𝑒𝑥𝑝(𝑛𝜙) 

            (35) 
 

where 

 

𝑚 =
𝜆2

12𝜎2
(3 + 𝛽)(1 − 𝛽), 

         (36.a) 
 

𝑛 =
𝜆

6𝜎
(3 + 𝛽)(1 − 𝛽). 

         (36.b) 
 

The equation of the final value of a scalar field is 

 

𝜙𝑓 = ±
√2

(1 − 𝛽) ±
2√2𝜎

𝜆

, 

            (37) 
 

so the equation of the initial value of a scalar field can 

be written as 
 

𝜙𝑖 =
𝑞 ± √𝑞2 − 4𝑝

2𝑝
 

            (38) 

 
with 

 

𝑝 =
2𝜎2

𝜆2
, 

         (39.a) 

 

𝑞 =
1

𝜙𝑓
⋅ 𝑒𝑥𝑝 [𝑁(1 − 𝛽) +

2𝜎

𝜆
𝜙𝑓] −

2𝜎

𝜆
. 

 

         (39.b) 

 
Constant values and calculation results for this model 

can be seen in Table 5 and the contour plot can be 

seen in Fig. 9-10. 
 
Table 5.  Constant values and calculation results of Model V. 
 

Quantity Value 

 𝜆 −7.01 × 10−2 

 𝜎 −0.468 × 10−5 

𝛽 0.9503 

𝑁 60 

𝑉0 8.131 × 10−1 

𝜙𝑓 28.34729 

𝜙𝑖 1.43180 

𝑛𝑠 0.96499 

𝑛𝑡 −0.00144 

𝑟 0.04089 

𝜙2̇  0.00128 

𝑉(𝜙) 0.76033 

𝐻̇ −6.41954 × 10−4 

𝐻2 0.25344 

𝑓1(𝜙) −0.14371 

𝑓2(𝜙) −9.59434 × 10−6 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 0.00255 

𝑐𝑠
2 0.99859 

 

 
Fig. 9. Contour plots of 𝑛𝑠 on model V. 

 
Fig. 10. Contour plots of  𝑟 on model V. 

 

It can be seen in Table 5 that the value of the scalar 

field in this model is increases and the rest of the 
values satisfy the condition for constant-roll and 

avoiding ghost and Laplacian instability. Fig. 9-10 

show that the contour lines of 𝑟 are vertical indicating 

that its value is more influenced by 𝛽. Since 𝛽 > 0.9, 

it might be impossible to apply a slow-roll condition 

for this model. 

 

Model VI: Quadratic 𝒇𝟏(𝝓) and Qubic 𝒇𝟐(𝝓) 
 

In this model we defined 



17 

IJP Volume 33, Number 1, 2022 

 

 

𝑓1(𝜙) = 𝜆𝜙2, 
         (40.a) 

 

𝑓2(𝜙) = 𝜎𝜙3. 
         (40.b) 

 

Derivation of the equations for this model is done in 
the same way as the previous model. The scalar 

potential can be written as 

 

𝑉(𝜙) = 𝑉0 [1 −
3𝜎𝜙2

𝜆
]

𝜆
9𝜎

(3+𝛽)(1−𝛽)

. 

 
            (41) 

 

The equation of the final value of a scalar field is 
 

𝜙𝑓 =
−𝑛 ± √𝑛2 − 4𝑚

2𝑚
 

 

            (42) 
 

where 

 

𝑚 =
3𝜎

𝜆
, 

         (43.a) 
 

𝑛 =
(1 − 𝛽)

√2
 

         (43.b) 

 

so the equation of the initial value of a scalar field can 
be written as 

 

𝜙𝑖 =
𝑞 ± √𝑞2 − 4𝑝

2𝑝
 

            (44) 

 

where 
 

𝑝 =
3𝜎

2𝜆
, 

         (45.a) 

 

𝑞 =
1

𝜙𝑓
⋅ 𝑒𝑥𝑝 [𝑁(1 − 𝛽) +

3𝜎

2𝜆
𝜙𝑓

2]. 

         (45.b) 
 

Constant values and calculation results for this model 

can be seen in Table 6 and the contour plot can be 
seen in Fig. 11-12. 

 

Table 6.  Constant values and calculation results of Model VI. 
 

Quantity Value 

 𝜆 −0.05 

 𝜎 1.25 × 10−3 

𝛽 0.857 

𝑁 60 

𝑉0 4 

𝜙𝑓 4.38729 

𝜙𝑖 0.00169 

𝑛𝑠 0.96401 

𝑛𝑡 −3.97625 × 10−9 

𝑟 4.70190 × 10−7 

𝜙2̇  7.84277 × 10−8 

𝑉(𝜙) 3.99999 

𝐻̇ −3.92138 × 10−8 

𝐻2 1.33333 

𝑓1(𝜙) −1.43823 × 10−7 

𝑓2(𝜙) 6.09816 × 10−12 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 2.94104 × 10−8 

𝑐𝑠
2 0.99946 

 

 
Fig. 11. Contour plots of 𝑛𝑠 on model VI. 

 
Fig. 12. Contour plots of  𝑟 on model VI. 
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It can be seen in Table 6 that the value of the scalar 
field in this model is increases and the rest of the 

values satisfy the condition for constant-roll and 

avoiding ghost and Laplacian instability. Fig. 11-12 

show that the contour lines of 𝑛𝑠 are slightly 
horizontal indicating that its value is more influenced 

by 𝜆 while the contour lines of 𝑟 are slightly vertical 

indicating that its value is more influenced by 𝛽. 

Since 𝛽 > 0.8, it might be impossible to apply a 

slow-roll condition for this model. 

 

Model VII: Qubic 𝒇𝟏(𝝓) and Linear 𝒇𝟐(𝝓) 
 

In this model we defined 

 

𝑓1(𝜙) = 𝜆𝜙3, 
         (46.a) 

 

𝑓2(𝜙) = 𝜎. 
         (46.b) 

 

Derivation of the equations for this model is done in 
the same way as the previous model. The scalar 

potential can be written as 

 

𝑉(𝜙) = 𝑉0 (1 −
6𝜆𝜙

𝜎
)

−𝑚

𝑒𝑥𝑝(−𝑛) 

            (47) 
 

with 

 

𝑚 =
𝜎2(3 + 𝛽)(1 − 𝛽)

216𝜆2
, 

         (48.a) 
 

𝑛 =
(3 + 𝛽)(1 − 𝛽)(𝜎 + 3𝜆𝜙)𝜙

36𝜆
. 

         (48.b) 
 

The equation of the final value of a scalar field is 

 

𝜙𝑓 =
𝑞 ± √𝑞2 − 4𝑝𝑜

2𝑝
 

            (49) 

 

with 
 

𝑝 =  3𝜆, 
         (50.a) 

 

𝑞 =
6√2

(1 − 𝛽)
, 

         (50.b) 

 

𝑜 =
2√2𝜎

(1 − 𝛽)
 

         (50.c) 

 
so the equation of the initial value of a scalar field can 

be written as 

 

𝜙𝑖 =
1 ± √1 − 4𝑡𝑢

2𝑡
 

            (51) 

 

with 
 

𝑡 =
1

𝜙𝑓
𝑒𝑥𝑝 [

(1 − 𝛽)𝑁

2
−

𝜎

6𝜆𝜙𝑓
], 

         (52.a) 

 

𝑢 =
𝜎

6𝜆
. 

         (25.b) 

 

Constant values and calculation results for this model 
can be seen in Table 7 and the contour plot can be 

seen in Fig. 13-14. 

 
Table 7.  Constant values and calculation results of Model VII. 
 

Quantity Value 

 𝜆 −0.14565 

 𝜎 0.00001 

𝛽 0.85 

𝑁 60 

𝑉0 0.0001 

𝜙𝑓 18.85620 

𝜙𝑖 0.20948 

𝑛𝑠 0.96481 

𝑛𝑡 −2.46782 × 10−4 

𝑟 0.00195 

𝜙2̇  8.20907 × 10−9  

𝑉(𝜙) 9.97890 × 10−5 

𝐻̇ −4.10453 × 10−9 

𝐻2 3.32630 × 10−5 

𝑓1(𝜙) −0.00133 

𝑓2(𝜙) 2.09484 × 10−6 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 1.23375 × 10−4 

𝑐𝑠
2 0.99263 
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Fig. 13. Contour plots of 𝑛𝑠 on model VII. 

 
Fig. 14. Contour plots of  𝑟 on model VII. 

 
It can be seen in Table 7 that the value of the scalar 

field increases, and the rest of the values satisfy the 

condition for constant-roll and avoiding ghost and 
Laplacian instability. Fig. 13-14 show that the 

contour lines of both 𝑛𝑠 and r are vertical indicating 

that their value is more influenced by 𝛽. Since 𝛽 >
0.8, it might be impossible to apply a slow-roll 
condition for this model. 

 

Model VIII: Qubic 𝒇𝟏(𝝓) and Quadratic 𝒇𝟐(𝝓) 
 

In this model we defined 

 

𝑓1(𝜙) = 𝜆𝜙3, 
         (53.a) 

 

𝑓2(𝜙) = 𝜎𝜙2. 
         (53.b) 

 

Derivation of the equations for this model is done in 

the same way as the previous model. The scalar 
potential can be written as 

 

𝑉(𝜙) = 𝑉0 𝑒𝑥𝑝 [−
(3 + 𝛽)(1 − 𝛽)𝜆

2(6𝜆 − 4𝜎)
𝜙2]. 

           
            (54) 

 

The equation of the final value of a scalar field is 

 

𝜙𝑓 = ±
√2(6𝜆 − 4𝜎)

3𝜆(1 − 𝛽)
 

            (55) 

 

so the equation of the initial value of a scalar field can 

be written as 
 

𝜙𝑖 = 𝜙𝑓 [𝑒𝑥𝑝 (
3(1 − 𝛽)𝜆𝑁

6𝜆 − 4𝜎
)]

−1

. 

            (56) 

 

Constant values and calculation results for this model 
can be seen in Table 8 and the contour plot can be 

seen in Fig. 15-16. 

 
Table 8.  Constant values and calculation results of Model VIII. 
 

Quantity Value 

 𝜆 −0.007 × 10−5 

 𝜎 0.01 × 10−4 

𝛽 6.5 × 10−3 

𝑁 60 

𝑉0 0.5 

𝜙𝑓 29.96057 

𝜙𝑖 1.76426 

𝑛𝑠 0.96467 

𝑛𝑡 −0.00693 

𝑟 0.05543 

𝜙2̇  0.00107 

𝑉(𝜙) 0.46451 

𝐻̇ −5.36910 × 10−4 

𝐻2 0.15483 

𝑓1(𝜙) −3.84403 × 10−7 

𝑓2(𝜙) 3.11262 × 10−6 

𝐿𝒮 0.5 

ℰ 0.5 

𝑄𝑠 0.00346 

𝑐𝑠
2 0.99949 
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Fig. 15. Contour plots of 𝑛𝑠 on model VIII. 

 
Fig. 16. Contour plots of  𝑟 on model VIII. 

 
It can be seen in Table 8 that the value of the scalar 

field increases, and the rest of the values satisfy the 

condition for constant-roll and avoiding ghost and 
Laplacian instability. Fig. 15-16 show that the 

contour lines of 𝑟 are slightly horizontal indicating 

that its value is more influenced by 𝜆. Since the 

values of 𝑛𝑠 and 𝑟 are rapidly changing due to the 

changes of values of 𝛽 and 𝜆, it might be impossible 

to apply a slow-roll condition for this model. 

 
 

DISCUSSION 
 

We have analyzed eight models containing 
variations of the Gauss-Bonnet coupling with the 

non-minimal derivative coupling. We start the 

analysis using model I because linear Gauss-Bonnet 
coupling with linear non-minimal derivative 

coupling cannot generate 𝜙𝑓 when applied to 𝜖 = 1 

and from equation (15) it can be seen that Gauss-

Bonnet coupling function cannot be in constant or 

linear function alone without non-minimal derivative 

coupling. 
 

The constant values 𝜆, 𝜎, 𝛽, and 𝑉0 listed in 

Table (1)-(8) are "fitting" values with the values of 

ns and r listed in (21). There is no definite reference 
regarding the value of these constants, so any value 

will be accepted as long as the conditions (21) are 

met. In addition, these values must also meet the 

slow-roll conditions (5) and the conditions for 
avoiding ghost and Laplacian instability. The scalar 

propagation speed also has the condition 𝑐𝑠
2 < 1 in 

order not to violate the theory of relativity and 

constant-roll has the condition 𝛽 ≠ 1 because 

otherwise the universe would be inflated forever 

(eternal inflation). We only choose 𝛽 → 0 or 𝛽 → 1 

in our models. 
 

We started the analysis with model I and model 

II. Both models have linear Gauss-Bonnet coupling 
with different non-minimal derivative coupling. The 

effect of non-minimal derivative coupling on linear 

Gauss-Bonnet coupling gives a decrease in scalar 

field evolution, with the higher rank of Non-minimal 
derivative coupling giving a larger gap.  

 

Model III with Non-minimal zero derivative 
coupling gives an increase in scalar field evolution. 

The effect of non-minimal derivative coupling on 

quadratic Gauss-Bonnet coupling can be seen in 
Model IV-VI. Model IV with linear non-minimal 

derivative coupling increases the gap in the scalar 

field compared to model III. However, Model V-VI 

narrows that gap again. We chose the quadratic 
Gauss-Bonnet coupling as the basis for most models 

because it is believed to be able to provide a solution 

for inflation [10-12]. We can hypothesize that the 
effect of non-minimal derivative coupling generally 

reduces the scalar field gap for models that already 

have increased scalar field evolution, although we 

need to analyze more deeply for quadratic Gauss-
Bonnet coupling especially for cases such as model 

III and model V because both models have higher 

values of Gauss-Bonnet coupling compared to other 
models. 

 

The effect of non-minimal derivative coupling 
on cubic Gauss-Bonnet coupling can be seen in 

Model VII-VIII. Both models give an increase in 

scalar field evolution, with the higher rank of non-

minimal derivative coupling giving a larger gap. We 
have also analyzed a model with a cubic Gauss-

Bonnet coupling without non-minimal derivative 

coupling (which we do not present in this paper) and 
we find that the model has a larger gap in scalar field 

evolution compared to model VII and model VIII. 

We hypothesize that the effect of non-minimal 
derivative coupling may be different for each Gauss-

Bonnet coupling, depending on the rank of the 

couplings. This hypothesis can be proven by model 

IV and model VIII. Both models have similar 
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constant values, the same rank difference, and an 
increasing scalar field evolution with similar values. 

 

 

CONCLUSION 
 

We have analyzed the compatibility of 

Einstein-Gauss-Bonnet inflation theory with non-
minimal derivative coupling in the constant-roll case 

for event GW170817. We begin the analysis by 

deriving field equations from Lagrangian and its 

perturbations using ADM formalism and Horndeski 

theory. We also use the approximation 𝑐𝑡
2 = 1 which 

indicates that the speed of the gravitational wave 

GW170817 is almost the same as the speed of light.  

 

We find that the Gauss-Bonnet coupling 𝑓1(𝜙) 

and its derivatives with respect to scalar field 𝜙 and 

constant-roll parameter 𝛽 appear frequently in the 

formulation so that it greatly affects the calculations. 
However, the Gauss-Bonnet coupling cannot be a 

constant or a linear function without a non-minimal 

derivative coupling because it cannot produce a 

scalar field. 
 

We selected eight models in this paper and the 

constant values we are using are "fitting" values with 

the values of ns and r listed in Planck 2018 data. We 

find that the evolution of the scalar field is affected 

by the rank of the Gauss-Bonnet coupling. Linear 

Gauss-Bonnet coupling produces a decreasing scalar 
field evolution and their higher rank produces an 

increasing scalar field evolution. Non-minimal 

derivative coupling affects its gap. 
 

Further study can be carried out with more 

diverse variations of the coupling function. In 
addition, the MCMC (Markov Chain Monte Carlo) 

method can also be used to obtain more diverse 

constant values so that the calculations are more 

accurate and precise on Planck 2018 data. 
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