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Abstract

Inflation is a theory in cosmology that explains that the early universe experienced a very fast expansion in a very short
time and is able to explain some cosmological problems and the presence of gravitational waves generated during the
inflation period. Based on the event GW170817, it was found that ¢ = 1, which indicates that the speed of gravitational
waves is nearly equal to the speed of light. This contradicts several modified theories of gravity, one of which is the
Einstein-Gauss-Bonnet theory. This paper examines the compatibility of Einstein-Gauss-Bonnet inflation theory with the
GW170817 phenomenon, with the addition of the non-minimal derivative coupling term and the constant-roll approach
and its characteristics. The formulation of observational quantities is carried out using Horndeski theory and Effective Field
Theory with ADM formalism and the calculations are done numerically. The constant values are selected in such a way
that the spectral index values and tensor-scalar ratios are close to the 2018 Planck data. The results found that this theory

is compatible with GW170817 with the influence of Gauss-Bonnet term and constant-roll parameter 8 most dominant.
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INTRODUCTION

The neutron star merger that produces
GW170817 provides information that gravitational
wave has a speed almost the same as electromagnetic
radiation that produced by itself [1]. This fact states
that the speed of gravitational waves is almost the
same as the speed of light (¢ = 1). Unfortunately,
this fact also contradicts some of the generalized
theories of Einstein's theory of gravity that do not
predict massless graviton, one of them is Einstein-
Gauss-Bonnet [2].

Einstein-Gauss-Bonnet theory is the theory
that is believed to be a theory that is able to explain
the era of inflation and several other primordial
astrophysical objects because this theory is motivated
by string theory. Several studies on Gauss-Bonnet
compatibility with GW170817 have been done, and
one of them is by using the constant-roll evolution
[3]. The constant-roll is known to enhance the non-
Gaussianities features [4]. The results indicate that

o Corresponding author.

Gauss-Bonnet with constant-roll is compatible with
GW170817 and Planck 2018 data.

Another study for this case is to add non-
minimal derivative coupling (NMDC) in slow-roll
evolution [5] and the results of this study also indicate
that this model is compatible with GW170817 and
Planck 2018 data. The presence of the NMDC allows
inflationary attractors to exist and they can be used to
apply a primordial phase transition model with an
extended inflation scheme [6].

Those studies motivated the author to work on
a gravitational wave based on the Gauss-Bonnet
inflation model with NMDC on constant-roll and
check its compatibility with GW170817. The
presence of two arbitrary coupling functions that
depend on the scalar fields makes it possible to obtain
several varied solutions.

GENERAL FORMULATION OF EINSTEIN-
GAUSS-BONNET  INFLATION  THEORY

E-mail address: naufal.auliadam@gmail.com
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WITH NON-MINIMAL DERIVATIVE
COUPLING IN THE CONSTANT-ROLL

Non-minimal derivative coupled Einstein-
Gauss-Bonnet theory can be described by the
gravitational action

R 1 1
5= [ d*x=g |5z - 3 09 + A@IRE
+ (@G V()]
@

where k = Mi = 1 as gravitational constant with Mp
P

denotes the reduced Planck mass, V(¢) is scalar
potential, and G, is Einstein tensor. R2p is Gauss-
Bonnet invariant that can be described as

RZp = R?> — 4R,pR™F + RypysRPYS
2

with R,z and Rqp,s as Ricci tensor and Riemann

tensor. Coupling function f; (¢) denotes the Gauss—
Bonnet coupling scalar function and f,(¢) denotes
the non-minimal derivative coupling function. By
varying the gravitational action (1) we get the field
equations

342 = 2 (8)° +V(#) ~ 3 (@)pH?
— 9f2(1)(¢)(qi))2H2

(3.9)
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(3.b)
v (¢) +3HP + ¢
= 3£,V (¢p)H?(H + H?)
+ 3£ (¢)(6)°H?

+ 61, (P)PH? + 18,V (p)pH?
+ 121 (p)HH

(3.0)

where V() is the first derivative of V(¢) with
respect to scalar field ¢. Constant-roll condition
provides

H «< H?
(4.9)
1,..2
3 (#)" « V()
(4.b)
¢ = BHP
(4.c)

with f;(¢p) « 1 and f,(¢p) €1 so (3) can be
simplified as

H = 3V()
(5.9)
. 1, ..z
H = —§(¢)
(5.h)
VD (p) + (3 +B)HP =~ 0.
(5.¢)

The explicit aim of this paper is to calculate the
observational quantities such as spectral indices and
tensor-to-scalar ratio from selected models and
compare them with the Planck 2018 data. The next
step is to calculate the perturbation of (1) to obtain
the formulation of the observational quantities.
Perturbation of (1) can be formulated with ADM
formalism using Horndeski theory [7]. The
Lagrangian of Horndeski is defined as

5
L= ) L
2

(6)

with
L, = G,(¢, X),
(7.9)
L3 = G3(¢'X)|:|¢;
(7.b)

Ly = G4 (¢, XIR — 2G4 (¢, D[((P)? — ¢* ¢, |

(7.c)
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Ly = G4(¢: X)R
— 2G4 (6, O[([P)? — ¢ ],
(7.d)
Ls = Gs(¢, X)Gyy o
1

+§Gsx(¢zX)[(D¢)3

=3[, ™

+ 2¢;’W¢;ua¢;};’]_
(7.e)

Here G;(i=2,3,4,5) in (5) are functions that
depends on scalar field ¢ and its kinetic energy X =
g”"@uqbav with GiX = aGl/aX and quv, = aGl/a(p
are partial derivatives of G;. According to (7), (1) can
be rewritten as

6= =5~ V@) + O[3 - n(-3)]

(8.9)
1 X
6=~ 1@ [7-3m(~3)]
(8.h)
1 1 X
G =53 A @x[2-in(=3)]
(8.¢)
1 X
65 = =5 A0@ in(=3) + £(@)
(8.d)
General slow-roll parameter is defined as
H
€= 1z
9)

and constant-roll condition provides another slow-
roll parameter as

__*
ﬁ_ H¢

(10)
which is also a constant-roll parameter. ADM

formalism also provides four additional slow-roll
parameters as

Qs
8Qs HQS’
(11.a8)
_ O
aTX
(11.b)
— C‘S
Oc, = Hcg'
(11.c)
T
8, = Hc,
(11.d)
with
2L
Qs = 7 (OW? + 8Lgw),
(12.3)
2, .
c2=—(M+HM -€),
Qs
(12.b)
_Ls
Qt = 2 4
(12.c)
E
¢t =—
(12.d)
where

. 1
ch = G4_ - 2XG4_X - H(I)XGSX - EXG5¢,
(13.3)

1 .
E=G,+=XG:y — XG ,
a+5XGsg sxP

(13.b)
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w = —18H2%G, + 3(XG,x + 2X2Goxx)
—18HP(2XG3x + X?G3xy)
— 3X(Gsp + XGspx)
+ 18H2(7XGay + 16X2%Gyxy
+4X3Gyxxx)
— 18H (G + 5XGagx
+ 2X%Gapxx)
+ 6H3P(15XGsy + 13X%Gsyy
+2X3Gsxxx)
+9H?X(6Gsgp + 9XGspx
+ 2X%Gspxx )
(13.c)

W = 4HG, + 2 XG3y — 16H (XGyx + X%Guxy)
+ 2¢(Gagp + 2XGagpx)
— 2H?>¢(5X G5y + 2X%Gsyy)
— 2HX(3Gsg + 2XGsgx ),

(13.d)

4%
M =—"
w

(13.e)

Equations (11) came from our assumption about
small variations of (12) since Hubble parameter H is
nearly constant during inflation. The conditions for
the avoidance of the ghost and Laplacian instability
are given by Lg>0 and &€>0 for tensor
perturbation cases and Q; > 0 and c2 > 0 for scalar
perturbation cases [8]. Observational quantities such
as spectral indices and tensor-to-scalar ratios can be
formulated as

ng =1—2e— 6o, — 36,

(14.a)
ny = —2€ — 8y, — 36,
(14.b)
r= 4—Qscsz
Qcct
(14.c)

with n, as scalar spectral index, n; as tensor spectral
index, and r as tensor-to-scalar ratio. Both of spectral
indices n; and n; are the parameter that describes the
nature of primordial density perturbations, where n,
represents scalar fluctuations, n; represents tensor
fluctuations, and r represents ratio of their power
spectra. We refer readers to [7] for how to derive
(11)-(14) and more detailed explanations. Condition

cZ = 1 can be implemented to (1), (13.a), and (13.b)
so we get

£D ()1 - pH
£2@) - 212 ()

¢ =
(15)

The value of scalar field ¢ in this paper uses the
initial value of scalar field ¢;, which is the value of
the scalar field at the beginning of inflation. This
quantity can be formulated from the e-foldings
number N, defined as

brH
V=), g
(16)

where ¢ is the final value of scalar field which is the
value of the scalar field at the end of inflation that can
be formulated by equating slow-roll parameter (9)
e=1.

SPECIFIC MODELS OF EINSTEIN-GAUSS-
BONNET INFLATION THEORY WITH NON-
MINIMAL DERIVATIVE COUPLING IN THE
CONSTANT-ROLL

In this paper, we construct eight models based
on variations of f;(¢) and f,(¢). Derivation of
equations is done analytically by hand, while
calculations and contour plots are done numerically
by MATLAB.

Model I: Linear f(¢) and Quadratic f,(¢)

In this model we defined

fi (¢) = ¢,
(17.a)

f2 (¢) = 0¢2
(17.b)

where A and o are the arbitrary constants for

coupling functions. We apply (17) to (5.c) and (15)
so the scalar potential can be written as

B+p@A-p)2
P 120

V(p) =Vpe

(18)
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where Vj is the constant for scalar potential. Next, we
use e =1 from (5.a), (5.b), and (9) to find the
equation of the final value of a scalar field,

+/1(1 -B)

¢r =% 420 19)
19

where we always use the positive value of scalar
fields. The equation of the initial value of a scalar
field can be derived from (16) so it can be written as

~ N(1— )2
¢ = \[(Pf 0

(20)

Furthermore, the spectral indices and tensor-to-scalar
ratio can be calculated using the equations that have
been derived previously. Calculations are performed
numerically using MATLAB. The constant values
are made in such a way that the scalar spectral index
and tensor-scalar ratio values are close to the values
in the 2018 Planck data as [9]

ny = 0.9649 £ 0.0042,
(21.a)

r < 0.064.
(21.b)

Constant values and calculation results for this model
can be seen in Table 1 and the contour plot can be
seen in Fig. 1-2.

Table 1. Constant values and calculation results of Model I.

Quantity Value
A -8 x 1077
o —-2x107°
J54 0.01
N 60
Vs 20
br 0.07000
o; 3.44745
ng 0.96489
n, —0.00329
r 0.02633
$2 0.08372
V(g) 76.14935
H —0.04186
H? 25.38312
fi(P) —2.75x 107°
f2(®) —237 %1075

Ls 0.5

3 05
Qs 0.00165
c? 0.99784

It can be seen in Table 1 that the value of the scalar
field decreases. In addition, H « H? and <¢52/2 &
V (¢) so that it satisfies the condition of constant-roll.
The values of Lg, &, Q,, c2 > 0, so that the conditions
for avoiding ghost and Laplacian instability are met
and the value of the scalar propagation speed is close
to the speed of light (c2 ~ 1).

n
s

-7.9

-7.92

x
X
099 —%,

-7.94

7.96
X 0.010101 007
-7.98 Y -8.00101e-07

Level 0.9646 0.965

< 8

-8.02

0.29

-B.04

-8.06

-6.08

81
0 0.005 0.01 0.015 0.02
I

Fig. 1. Contour plots of ng on model L
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Level 0.026332
d

-8.02
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%0
25
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%,
808 G

81
0 0.005 0.01 0.015 0.02
I

Fig. 2. Contour plots of 7 on model .

We have provided two contour graphs for the values
of ng and r by selecting the constant-roll g as the
x coordinates and the Gauss-Bonnet coupling
constants A as the y coordinates. This selection is
based on the frequent occurrence of the two constants
in the equations. It can be seen that the contour lines
of ng are drawn vertically indicating that its value is
more influenced by S.

Model I1: Linear f4(¢) and Qubic f,(¢)

In this model we defined
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f1(¢) = 29,
(22.9)

f2(¢) = 0'¢3-
(22.b)

Derivation of the equations for this model is done in

the same way as the previous model. The scalar
potential can be written as

_8+ﬁX1—m]

V(g) = Voexp 186

(23)

The equation of the final value of a scalar field is

(24)

so the equation of the initial value of a scalar field can
be written as

M1 =Py
T A1 -B) - 60N

(25)

Constant values and calculation results for this model
can be seen in Table 2 and the contour plot can be
seen in Fig, 3-4.

Table 2. Constant values and calculation results of Model II.

Quantity Value

A -1x1077

o —4.25%x 10712

J4 0.01

N 60

V, 25

b5 52.39502

o; 2.75388 x 102

ng 0.96453

ne —0.00262

r 0.02095

$2 0.02182
V(p) 24.98497

H —0.01091

H? 8.32832
fi(®) —2.75388 x 1075
f2(®) —8.87615 x 1075

Ls 0.5

£ 0.5

Qs 0.00131
c2 0.99974
=107 i'5/ ;

X 0.00994949 [0 )
.1 Y Ae-07 096
Level 0.964682

5 0 5 10 15
a %1073

Fig. 3. Contour plots of ng on model II.

<1077 r

X 0.00994949
ER| Y 1e-07 045
Level 0.0209671

18 5 0 0.1
[ 045
i 0.45
LR m—— I i~ 0.05
2 =855
5 0 5 10 15

a %107

Fig. 4. Contour plots of r on model II.

It can be seen in Table 2 that the value of the scalar
field in this model is increases and the rest of the
values satisfy the condition for constant-roll and
avoiding ghost and Laplacian instability. Fig. 2-3
show that it is possible to apply the slow-roll
condition (8 = 0) with some minor changes in A and
the contour lines of r are slightly horizontal
indicating that r is more influenced by A.

Model I11: Quadratic f(¢p) and Zero f,(¢p)

In this model we defined

fi (‘f’) = ¢,
(26.2)

fz (‘f’) = 0.
(26.b)

Derivation of the equations for this model is done in
the same way as the previous model. The scalar
potential can be written as
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_B+RU-p)

V(¢) =Vyexp 6 P?|.

@7)
The equation of the final value of a scalar field is

V3
r=*ap

(28)

so the equation of the initial value of a scalar field can
be written as

b; = rlexp((1— pIN)| .
(29)

Constant values and calculation results for this model
can be seen in Table 3 and the contour plot can be
seen in Fig. 5-6.

Table 3. Constant values and calculation results of Model III.

Quantity Value

A -1.09

o 0

g 0.92

N 60

Vs 0.09

br 17.67766

o; 0.14548

ng 0.96433

n, —2.48386 x 107°

r 0.00108

$2 4,05923x 107¢
V(g) 0.08990

H —2.02961 x 107¢

H? 0.02996
f1(9) —0.02307
f2(®) 0

Ls 0.5

£ 0.5

Qs 6.77454 x 107°

c? 0.99988

n
s

X 0.92001
-1.088 Y -1.0889
Level 0.964676
d

-1.092

-1.094

-1.098

-1.098

ER!
0.919 0.9195 0.92 0.9205 0.921

8
Fig. 5. Contour plots of n, on model III.

-1.08

-1.082

-1.084

-1.086

X 0.92001
-1.088 Y -1.0889
Level 0.00108518
d

-1.082

-1.094

-1.098

-

-1.008

4.1
0.919 0.9195 0.92 0.9205 0.1
3

Fig. 6. Contour plots of 7 on model II.

It can be seen in Table 3 that the value of the scalar
field in this model is increases and the rest of the
values satisfy the condition for constant-roll and
avoiding ghost and Laplacian instability. Fig. 5-6
show the contour lines of r are slightly vertical
indicating that r is more influenced by . Since g >
0.9, it might be impossible to apply a slow-roll
condition for this model.

Model 1V: Quadratic f,(¢) and Linear f,(¢)
In this model we defined

fi (¢) = /W’Z:
(30.a)

f2(p) = o¢p.
(30.b)

Derivation of the equations for this model is done in
the same way as the previous model. The scalar
potential can be written as

_G+RA-P2
6(1—o0)

V(p) =Vyexp 2.
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(31)
The equation of the final value of a scalar field is

B +\/§(/1— o)
A TE))
(32)

so the equation of the initial value of a scalar field can
be written as

(1-paN\|""
S5

i = ¢r [exp <

(33)

Constant values and calculation results for this model

can be seen in Table 4 and the contour plot can be
seen in Fig. 7-8.

Table 4. Constant values and calculation results of Model 1V.

Quantity Value

A —0.005 x 107>

o 0.01x 107*

B 6.5 x 1073

N 60

Vo 0.5

br 29.89278

o; 1.74900

ng 0.96424

n, —0.00684

r 0.05476

$2 0.00106
V(p) 0.46502

H —5.30643 x 107*

H? 0.15500
f1(P) —1.52950 x 1077
f2(P) 1.74900 x 1076

Ls 0.5

£ 0.5

Qs 0.00342

c? 0.99985

-8 s
49 “\D 0.99
492 ¢
B
aon .\ 0.985
496
\ X 0.00650303 0.98
498 Y -4.99899e-08
Level 0.96422
- -5 =
0975
5.02 T
=
5.04 & 087
5.06
508 0.965
51
3 2 a4 0 1 2 3 4 5 6
g «10°3

Fig. 7. Contour plots of n, on model IV.

%108 r
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Q.06 —|

o I
Tl-bs .I\
0.056

X 0.00650303

Y -4.99899%e-08
Level 0.0548221
- -5 1

-4.94

-4 96

-4.98

-5.02
-5.04
-5.06
-5.08

—5.17
Fig. 8. Contour plots of 7 on model IV.

It can be seen in Table 4 that the value of the scalar
field in this model is increases and the rest of the
values satisfy the condition for constant-roll and
avoiding ghost and Laplacian instability. Fig. 7-8
show that the contour lines of ng are slightly vertical
indicating that its value is more influenced by g while
the contour lines of r are slightly horizontal
indicating that its value is more influenced by A.
Since the values of n, and r are rapidly changing due
to the changes of values of g and A, it might be
impossible to apply a slow-roll condition for this
model.

Model V: Quadratic f,(¢) and Quadratic f,(¢)
In this model we defined

fi (‘f’) = /1‘.1’2:
(34.9)

(@) = U‘f’z-
(34.b)

Derivation of the equations for this model is done in
the same way as the previous model. The scalar
potential can be written as
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V() = [@]m exp(nd)

(39)
where
2
=553 +HU-B),

(36.3)

A
n==—=G+p1-p)
(36.b)

The equation of the final value of a scalar field is

V2
1-p+

or=* 2\/_0

@37)

so the equation of the initial value of a scalar field can
be written as

qEtq*—4p
b = 2
(38)
with
202
p= ?'
(39.3)
1 20
q =¢—f-exp[1v(1—ﬁ)+—¢f] -
(39.b)

Constant values and calculation results for this model
can be seen in Table 5 and the contour plot can be
seen in Fig. 9-10.

Table 5. Constant values and calculation results of Model V.

Quantity Value
A —7.01x 1072
o —0.468 x 107>
B 0.9503
N 60
Vo 8.131x 1071
or 28.34729
o, 1.43180

ng 0.96499

n, —0.00144

r 0.04089

$2 0.00128
V(p) 0.76033

H —6.41954 x 107*

H? 0.25344
f1(9) —0.14371
f2($) —9.59434 x 1076

Ls 0.5

£ 0.5

Qs 0.00255

c2 0.99859

-0.07
04975

-0.07002
-0.07004

-0.07006
X 0.950301
Y -0.070103

| Level 0.965191 0.965

-0.07008

< -0.0701

-0.07012

-0.07014

-0.07016

-0.07018
0955

-0.0702
0.9502 0.95025 0.9503

I
Fig. 9. Contour plots of n, on model V.

0.95035 0.9504

0.0413

-0.07

-0.07002 0.0412

0.0413 —

-0.07004 0.0411

-0.07006
0.041

X 0.950301
Y -0.070103
Level 0.0409003

-0.07008
0.0409

= -0.0701
0.0408
-0.07012

0.0407
-0.07014

0.0413

0.07016 0.0408

-0.07018 0.0405

-0.0702
0.9502 0.95025 0.9503

3

0.95035 0.9504
Fig. 10. Contour plots of r on model V.

It can be seen in Table 5 that the value of the scalar
field in this model is increases and the rest of the
values satisfy the condition for constant-roll and
avoiding ghost and Laplacian instability. Fig. 9-10
show that the contour lines of r are vertical indicating
that its value is more influenced by g. Since g > 0.9,
it might be impossible to apply a slow-roll condition
for this model.

Model VI: Quadratic f4(¢) and Qubic f,(¢)
In this model we defined
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fi (¢) = /1¢2:
(40.9)

f2(¢p) = 0¢3-
(40.b)

Derivation of the equations for this model is done in
the same way as the previous model. The scalar
potential can be written as

30¢?
A

(3B (1-P)
Vi) =V, [1 - ]

(41)

The equation of the final value of a scalar field is

—n+vVn?—4m

¢r = 2m

(42)
where

_ 30

m= 7,
(43.3)

_a-p

V2

(43.b)

so the equation of the initial value of a scalar field can
be written as

qtq*—4p
;i = >

p

(44)
where

_ 30

P=o0
(45.3)

1 30 )
q= ¢—f exp [N(l -B) +ﬂ¢f]'

(45.h)

Constant values and calculation results for this model
can be seen in Table 6 and the contour plot can be
seen in Fig. 11-12.

Table 6. Constant values and calculation results of Model V1.

Quantity Value

A —-0.05

o 1.25%x 1073

B 0.857

N 60

Vo 4

®r 4.38729

o; 0.00169

ng 0.96401

n, —3.97625 x 107°

r 4.70190 x 1077

¢? 7.84277 x 1078
V(¢) 3.99999

H —3.92138x 1078

H? 1.33333
fi() —1.43823x 1077
f2(#) 6.09816 x 10712

Ls 0.5

& 0.5

Qs 2.94104 x 1078

c2 0.99946

-0.049

-0.0492

-0.0494

-0.0496

-0.0498

= .06 d

-0.0502

-0.0504

-0.0506

X 0.85701
Y -0.0500101
Level 0.964671

1.02

0.98

0.96

0.94

0.92

-0.0508

402 —

0.4

-0.051
0.856 0.8565 0.857

I

0.8575 0.858

Fig. 11. Contour plots of ng on model VI.

# 107
52
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Level 4.70802e-07 47
< 005 J
46
-0.0502
45
-0.0604
44
g
-0.0506
wé 43
-0.0508 i
/‘ 42
-0.061
0.856 0.8565 0.857 0.8575 0.858

a

Fig. 12. Contour plots of r on model VL
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It can be seen in Table 6 that the value of the scalar
field in this model is increases and the rest of the
values satisfy the condition for constant-roll and
avoiding ghost and Laplacian instability. Fig. 11-12
show that the contour lines of ng are slightly
horizontal indicating that its value is more influenced
by 4 while the contour lines of r are slightly vertical
indicating that its value is more influenced by f£.
Since B > 0.8, it might be impossible to apply a
slow-roll condition for this model.

Model VII: Qubic f1(¢) and Linear f,(¢)
In this model we defined

fi (¢) = /1(153:
(46.a)

f2 (¢) =0.
(46.b)

Derivation of the equations for this model is done in
the same way as the previous model. The scalar
potential can be written as

l -m
V) =V (1-22) " exp(-m)
(47)
with
_a’B+p(1-p)
m= 21622
(48.3)
_G+RU- P+ 32
n= 361 '
(48.b)

The equation of the final value of a scalar field is

" q*+q*—4po
/A —

2p
(49)
with
p = 34,
(50.3)
62
Ta-p

(50.b)

_ 2\20
S 1-p

o
(50.c)

so the equation of the initial value of a scalar field can
be written as

1++vV1-—4tu
T
(51)
with
fe e [(1_ﬁ)N— i ]
“o P 2 61, |
(52.3)
_ o
u= a
(25.b)

Constant values and calculation results for this model
can be seen in Table 7 and the contour plot can be
seen in Fig. 13-14.

Table 7. Constant values and calculation results of Model VII.

Quantity Value

J) —0.14565

o 0.00001

J4 0.85

N 60

Vo 0.0001

oy 18.85620

o; 0.20948

ng 0.96481

n, —2.46782 x 107*

r 0.00195

$2 8.20907 x 10~°
V(p) 9.97890 x 1075

H —4.10453 x 107°

H? 3.32630 x 1075
fi(®) —0.00133
f2($) 2.09484 x 1076

Ls 0.5

£ 0.5

Qs 1.23375 x 10~*

c2 0.99263
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Fig. 13. Contour plots of n, on model VII.
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Fig. 14. Contour plots of 7 on model VII.

It can be seen in Table 7 that the value of the scalar
field increases, and the rest of the values satisfy the
condition for constant-roll and avoiding ghost and
Laplacian instability. Fig. 13-14 show that the
contour lines of both ng and r are vertical indicating
that their value is more influenced by . Since 8 >
0.8, it might be impossible to apply a slow-roll
condition for this model.

Model VI11: Qubic f,(¢) and Quadratic f,(¢)
In this model we defined

fi (¢) = A¢3'
(53.3)

f2(¢) = ‘7¢2-
(53.b)

Derivation of the equations for this model is done in
the same way as the previous model. The scalar
potential can be written as

B+ -p)2
2(61 — 40)

V(g) = Voexp |- P?|.

(54)
The equation of the final value of a scalar field is

_ V2(6A~40)
AEVICE)!
(55)

so the equation of the initial value of a scalar field can
be written as

3(1 - B)AN)]_l

i = o [exp( 61— 40

(56)

Constant values and calculation results for this model
can be seen in Table 8 and the contour plot can be
seen in Fig. 15-16.

Table 8. Constant values and calculation results of Model VIII.

Quantity Value

J) —0.007 x 1075

o 0.01x 107*

J4 6.5x 1073

N 60

Vs 0.5

oy 29.96057

o; 1.76426

ng 0.96467

n, —0.00693

r 0.05543

$2 0.00107
V(g) 0.46451

H —5.36910 x 107*

H? 0.15483
fi($) —3.84403 x 1077
f2(®) 3.11262 x 1076

Ls 0.5

£ 0.5

Qs 0.00346

c2 0.99949




20

1JP Volume 33, Number 1, 2022

X 0.00650303
Y -7.0101e-08
Level 0.964794

i %107

Fig. 15. Contour plots of ng on model VIIL.
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Fig. 16. Contour plots of 7 on model VIIL.

It can be seen in Table 8 that the value of the scalar
field increases, and the rest of the values satisfy the
condition for constant-roll and avoiding ghost and
Laplacian instability. Fig. 15-16 show that the
contour lines of r are slightly horizontal indicating
that its value is more influenced by A. Since the
values of ng and r are rapidly changing due to the
changes of values of 8 and A, it might be impossible
to apply a slow-roll condition for this model.

DISCUSSION

We have analyzed eight models containing
variations of the Gauss-Bonnet coupling with the
non-minimal derivative coupling. We start the
analysis using model | because linear Gauss-Bonnet
coupling with linear non-minimal derivative
coupling cannot generate ¢, when applied to e = 1
and from equation (15) it can be seen that Gauss-
Bonnet coupling function cannot be in constant or
linear function alone without non-minimal derivative
coupling.

The constant values 4, @, £, and V; listed in
Table (1)-(8) are "fitting" values with the values of

ng and r listed in (21). There is no definite reference
regarding the value of these constants, so any value
will be accepted as long as the conditions (21) are
met. In addition, these values must also meet the
slow-roll conditions (5) and the conditions for
avoiding ghost and Laplacian instability. The scalar
propagation speed also has the condition c2 < 1 in
order not to violate the theory of relativity and
constant-roll has the condition B # 1 because
otherwise the universe would be inflated forever
(eternal inflation). We only choose 8 - 0or g - 1
in our models.

We started the analysis with model I and model
I1. Both models have linear Gauss-Bonnet coupling
with different non-minimal derivative coupling. The
effect of non-minimal derivative coupling on linear
Gauss-Bonnet coupling gives a decrease in scalar
field evolution, with the higher rank of Non-minimal
derivative coupling giving a larger gap.

Model 11l with Non-minimal zero derivative
coupling gives an increase in scalar field evolution.
The effect of non-minimal derivative coupling on
quadratic Gauss-Bonnet coupling can be seen in
Model IV-VI. Model IV with linear non-minimal
derivative coupling increases the gap in the scalar
field compared to model 11l. However, Model V-VI
narrows that gap again. We chose the quadratic
Gauss-Bonnet coupling as the basis for most models
because it is believed to be able to provide a solution
for inflation [10-12]. We can hypothesize that the
effect of non-minimal derivative coupling generally
reduces the scalar field gap for models that already
have increased scalar field evolution, although we
need to analyze more deeply for quadratic Gauss-
Bonnet coupling especially for cases such as model
111 and model V because both models have higher
values of Gauss-Bonnet coupling compared to other
models.

The effect of non-minimal derivative coupling
on cubic Gauss-Bonnet coupling can be seen in
Model VII-VIII. Both models give an increase in
scalar field evolution, with the higher rank of non-
minimal derivative coupling giving a larger gap. We
have also analyzed a model with a cubic Gauss-
Bonnet coupling without non-minimal derivative
coupling (which we do not present in this paper) and
we find that the model has a larger gap in scalar field
evolution compared to model VII and model VIII.
We hypothesize that the effect of non-minimal
derivative coupling may be different for each Gauss-
Bonnet coupling, depending on the rank of the
couplings. This hypothesis can be proven by model
IV and model VIII. Both models have similar
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constant values, the same rank difference, and an
increasing scalar field evolution with similar values.

CONCLUSION

We have analyzed the compatibility of
Einstein-Gauss-Bonnet inflation theory with non-
minimal derivative coupling in the constant-roll case
for event GW170817. We begin the analysis by
deriving field equations from Lagrangian and its
perturbations using ADM formalism and Horndeski
theory. We also use the approximation ¢ = 1 which
indicates that the speed of the gravitational wave
GW170817 is almost the same as the speed of light.

We find that the Gauss-Bonnet coupling f; (¢)
and its derivatives with respect to scalar field ¢ and
constant-roll parameter 8 appear frequently in the
formulation so that it greatly affects the calculations.
However, the Gauss-Bonnet coupling cannot be a
constant or a linear function without a non-minimal
derivative coupling because it cannot produce a
scalar field.

We selected eight models in this paper and the
constant values we are using are "fitting" values with
the values of ng and r listed in Planck 2018 data. We
find that the evolution of the scalar field is affected
by the rank of the Gauss-Bonnet coupling. Linear
Gauss-Bonnet coupling produces a decreasing scalar
field evolution and their higher rank produces an
increasing scalar field evolution. Non-minimal
derivative coupling affects its gap.

Further study can be carried out with more
diverse variations of the coupling function. In
addition, the MCMC (Markov Chain Monte Carlo)
method can also be used to obtain more diverse
constant values so that the calculations are more
accurate and precise on Planck 2018 data.
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