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Abstract 

Ghost fields arise from the quantization of the gauge field with constraints (gauge fixing) through the path integral 

method. By substituting a form of identity, an effective propagator will be obtained from the gauge field with constraints 

and this is called the Faddeev-Popov method. The Grassmann odd properties of the ghost field cause the gauge 

transformation parameter to be Grassmann odd, so a BRST transformation is defined. Ghost field emergence with 

Grassmann odd properties can also be obtained through the least action principle with gauge transformation, and thus the 

relations between the BRST transformation parameters and the ghost field is obtained. 

 

Keywords: BRST transformation, Faddeev-Popov method, gauge field, gauge transformation, ghost field, least action 

principle 

 

 

 

INTRODUCTION 
 

The gauge field Lagrangian with constraints 

is not necessarily gauge invariant, therefore one 

constructs an effective Lagrangian from the gauge 

field. While the path integral quantization of the 

Yang-Mills theory with constraints forces the 

effective Lagrangian to have a ghost term in it. The 

existence of the ghost term in Lagrangian effectively 

shows that the system phase-space has been 

extended with the ghost degree of freedom. From 

this ghost freedom one defines BRST 

transformation with the transformation parameter 

which is similar to a ghost field. However, the 

presence of the ghost term in effective Lagrangian 

through path integral quantization does not show 

explicit relations between the gauge transformation 

parameter and the ghost field. 

 

In this paper, it will be shown that the ghost 

fields and gauge transformation parameters have 

relations by using the least action principle. In order 

to show the validity of these relations, we compare 

effective Lagrangian obtained from the least action 

principle, BRST variations and path integrals. 

 
 Corresponding author. 

   E-mail address: edyyanuwar@gmail.com 

 

The first part of this paper provides an 

overview of the gauge transformation. The second 

part explains the path integral quantization and the 

Faddeev-Popov method in finding effective 

propagators that leads to effective Lagrangian. 

While the third part discusses the least action 

principle which shows that the ghost field is a gauge 

transformation parameter with Grassmann odd 

properties. This property exists to make sure that the 

effective Lagrangian is gauge invariant. So that the 

BRST transformation is a gauge transformation with 

Grassmann odd parameters. Therefore, any 

Lagrangian that gauges invariant must be BRST 

invariant. This is explained in the fourth part about 

BRST symmetry. 

 

In addition, the BRST operator is defined to 

be nilpotent which makes the second variation 

always zero. This property makes any Lagrangian 

with a BRST variation form to have an invariant 

BRST action. This helps in determining the 

effective Lagrangian. 

 

 

GAUGE TRANSFORMATION 
 

The gauge transformation of the gauge field can be 

expressed as [1, 2] 
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𝐴𝜇
′ = 𝐴𝜇 − 𝑓   𝑏𝑐

𝑎 𝑡𝑎𝐴𝜇
𝑏𝛼𝑐(𝑥𝜇) +

1

𝑔
𝑡𝑎𝜕𝜇(𝛼𝑎(𝑥𝜇)) (1) 

𝐴𝜇
𝑎′ = 𝐴𝜇

𝑎 − 𝑓   𝑏𝑐
𝑎 𝐴𝜇

𝑏𝛼𝑐(𝑥𝜇) +
1

𝑔
𝜕𝜇(𝛼𝑎(𝑥𝜇)) (2) 

where 𝑓   𝑏𝑐
𝑎  is the structure constant of the gauge 

group, 𝑔 is the gauge field coupling constant, 𝑡𝑎 is 

the gauge group generator, 𝛼𝑐(𝑥𝜇) is the gauge 

transformation parameter that dependent on space-

time, and 𝑎, 𝑏, 𝑐 indexes expresses the internal 

symmetry index of the gauge field.   

 

Lagrangian of Yang-Mills field with Lorenz 

gauge condition is 

ℒ = −
1

4
𝐹𝜇𝜈

𝑎 𝐹𝑎
𝜇𝜈

−
1

2𝜉
∑ (𝜕𝜇𝐴𝑎

𝜇
)𝑎 (𝜕𝜈𝐴𝜈

𝑎)  (3) 

where the Yang-Mills field Lagrangian is gauge 

invariant. Gauge fixing Lagrangian (Lorenz gauge) 

is not necessarily invariant so effective action and 

Lagrangian are needed to find the propagator of 𝐴𝜇 

field as follows 

𝑍 = ⟨𝐴𝜇𝑖
𝑡𝑖|𝐴𝜇𝑓

𝑡𝑓⟩ = ∫ 𝐷𝐴𝜇  𝑒𝑖𝑆  (4) 

 

 

FADDEEV-POPOV METHOD 
 

The Faddeev-Popov method substitutes 

identity into eq. (4) so that an effective propagator is 

obtained from the gauge field with constraints. The 

gauge invariant form of identity is given by [2, 3] 

1 = 𝛥𝐹(𝐴𝜇
𝑈) ∫ 𝐷𝛼 𝛿(𝐹𝑎[𝐴𝜇

𝑈]) =

𝛥𝐹(𝐴𝜇) ∫ 𝐷𝛼 𝛿(𝐹𝑎[𝐴𝜇
 ]).    (5) 

The ∫ 𝐷𝛼 factor can be separated because the 

integrant does not depend on 𝛼 so that the 𝑍 

propagator can be written as  

𝑍 = ∫ 𝐷𝐴𝜇 ΔF(𝐴𝜇)𝛿(𝐹𝑎[𝐴𝜇]) 𝑒𝑖𝑆. (6) 

Whilst, from the form of identity obtained [3] 

ΔF(𝐴𝜇) = det |
𝛿𝐹𝑎

𝛿𝛼
|
𝐹𝑎=0

= det 𝑀 (7) 

with the integral representation of the determinant 

expressed in the Gaussian integral of the 

anticommuting field (Grassmann odd) [4]. In the 

case of finite dimensions, the determinant can be 

represented as 

det 𝑀 = ∫ 𝐷𝑐̅ 𝐷𝑐 𝑒𝑖 ∫ 𝑖𝑐̅𝑎𝑀𝑎𝑏𝑐𝑏 𝑑4𝑥 (8) 

where (𝑐̅𝑎, 𝑐𝑏) is the anticommuting field 

(Grassmann odd) with properties  

𝑐𝑖𝑐𝑗 = −𝑐𝑗𝑐𝑖,

𝑐̅𝑖𝑐̅𝑗 = −𝑐̅𝑗𝑐̅𝑖,

𝑐̅𝑖𝑐𝑗 + 𝑐𝑗𝑐̅𝑖 = 𝛿𝑖𝑗𝑒

}  (9) 

The 𝑐𝑏 and 𝑐̅𝑎 fields are independent Grassmann 

odd fields (both fields have different internal 

symmetries and Grassmann algebra, although both 

form Grassmann co-algebra). The 𝑐𝑏 field is usually 

called the ghost field and 𝑐̅𝑎 is called the anti-ghost 

field. 

General Lorenz gauge 𝐹𝑎[𝐴𝜇] = 𝜕𝜇𝐴𝜇
𝑎 +

𝐶𝑎, where 𝐶𝑎 is an arbitrary function, gives 

𝛿(𝐹𝑎[𝐴𝜇]) = 𝐶𝑎. The partition function 𝑍 is not 

affected by 𝐶𝑎 because 𝛿(𝐹𝑎[𝐴𝜇]) = 𝐶𝑎 is a 

multiplier in propagator [2] so that the propagator 

will be given as  

𝑍 = ∫ 𝐷𝐴𝜇𝐷𝑐̅ 𝐷𝑐 𝑒𝑖 ∫ ℒeff 𝑑
4𝑥             (10) 

where 

ℒeff = ℒ𝑌𝑀 + ℒ𝐺𝐹 + ℒ𝑔ℎ = −
1

4
𝐹𝜇𝜈

𝑎 𝐹𝑎
𝜇𝜈

−
1

2𝜉
∑ (𝜕𝜇𝐴𝑎

𝜇
)𝑎 (𝜕𝜈𝐴𝜈

𝑎) + 𝑖𝑐𝑎̅̅ ̅𝑀𝑎𝑏𝑐𝑏 .             (11) 

Now, 𝑀𝑎𝑏 can be found through [1] with 

det 𝑀 = det |
𝛿𝐹𝑎[𝐴𝜇]

𝛿𝛼
|

𝐹𝑎=0
= det(−𝑔𝜕𝜇𝐷𝜇

𝑎𝑏).   (12) 

Therefore  

ℒeff = −
1

4
𝐹𝜇𝜈

𝑎 𝐹𝑎
𝜇𝜈

−
1

2𝜉
∑ (𝜕𝜇𝐴𝑎

𝜇
)𝑎 (𝜕𝜈𝐴𝜈

𝑎) −

𝑖𝑐̅𝑎𝜕𝜇𝐷𝜇
𝑎𝑏𝑐𝑏.                (13) 

 

For quantum electrodynamics with gauge 

group 𝑈(1), the expression of the propagator 𝑍 

from the photon will be similar to equation (6), i.e. 

𝑍 = ∫ 𝐷𝐴𝜇 ΔF(𝐴𝜇)𝛿(𝐹[𝐴𝜇]) 𝑒𝑖𝑆           (14) 

and the form of identity will give results similar to 

equation (7) 

ΔF(𝐴𝜇) = det |
𝛿𝐹

𝛿𝛼
|

𝐹=0
= det (

1

𝑒
𝜕𝜇𝜕𝜇). (15) 

By changing the determinant into an integral form, 

and because of ghost propagators do not affect 

electromagnetic propagators, electromagnetic 

propagators can be written separately from ghost 

propagators. Electromagnetic propagator is 

expressed by 

𝑍 = ∫ 𝐷𝐴𝜇 𝑒𝑖 ∫ ℒ𝑌𝑀+ℒ𝐺𝐹 𝑑4𝑥, (16) 

where 

ℒ𝑄𝐸𝐷 = −
1

4
𝐹𝜇𝜈

 𝐹 
𝜇𝜈 −

1

2𝜉
(𝜕𝜇𝐴𝜇)(𝜕𝜈𝐴𝜈).     (17) 

 

 

LEAST ACTION AND GHOST FIELD 
 

After obtaining the ghost field through the 

Faddeev-Popov method, the ghost field will be 

constructed using the least action principle as 

performed in [5]. In this way explicit relations 

between the ghost fields and the transformation 

parameters are obtained. 

We will review the consequences caused by 

adding gauge fixing Lagrangian (Lorenz gauge) to 

the Yang-Mills Lagrangian in equation (3). The 

action of a Lagrangian must be gauge invariant, so 

the action of ℒ𝐺𝐹  must be gauge invariant. The 

proof is carried out through the least action principle 

on ℒ𝐺𝐹  with gauge transformation as follows 

∫ 𝑑4𝑥′ ℒ𝐺𝐹
′ = ∫ 𝑑4𝑥 (ℒ𝐺𝐹 + 𝛿ℒ𝐺𝐹),       (18) 
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so it gives results 

ℒ𝐺𝐹 → ℒ𝐺𝐹
′ = ℒ𝐺𝐹 + 𝛿ℒ𝐺𝐹             (19) 

where  

ℒ𝐺𝐹 = −
1

2𝜉
(𝜕𝜇𝐴𝑎

𝜇
)(𝜕𝜈𝐴𝜈

𝑎).             (20) 

From equations (19) and (20) we obtaine 

𝛿ℒ𝐺𝐹 =
1

𝜉𝑔
(𝜕𝜇𝐴𝑎

𝜇
)𝜕𝜈 (𝑔𝑓𝑏𝑐

𝑎 𝐴𝜈
𝑏𝛼 

𝑐(𝑥𝜇) −

𝜕𝜈(𝛼 
𝑎(𝑥𝜇)))                (21) 

so transformation (19) is not invariant. In order for 

transformation (19) to be invariant, take 

𝜕𝜈𝐷𝜈
𝑎𝑏𝛼𝑏(𝑥𝜇) = 𝜕𝜈 (𝑔𝑓𝑏𝑐

𝑎 𝐴𝜈
𝑏𝛼 

𝑐(𝑥𝜇) −

𝜕𝜈(𝛼 
𝑎(𝑥𝜇))) = 0.               (22) 

The parameter 𝛼 
𝑎 in equation (22) can be 

considered as a field with the Lagrangian  

ℒ𝛼 = −𝑖�̅�𝑎(𝑥𝜇)𝜕𝜈𝐷𝜈
𝑎𝑏𝛼𝑏(𝑥𝜇)             (23) 

where �̅�𝑎(𝑥𝜇) and 𝛼𝑏(𝑥𝜇) are non-interrelated 

gauge transformation parameters. 

 

From equations (3) and (23) the total 

Lagrangian is  

ℒ𝑡𝑜𝑡 = −
1

4
𝐹𝜇𝜈

𝑎 𝐹𝑎
𝜇𝜈

−
1

2𝜉
∑ (𝜕𝜇𝐴𝑎

𝜇
)𝑎 (𝜕𝜈𝐴𝜈

𝑎) − 𝑖�̅�𝑎(𝑥𝜇)𝜕𝜈𝐷𝜈
𝑎𝑏𝛼𝑏(𝑥𝜇), (24) 

so based on the least action principle 

𝛿ℒ =  𝛿ℒ𝑌𝑀 +  𝛿ℒ𝐺𝐹 + 𝛿ℒ𝛼 = 0           (25) 
1

𝜉𝑔
(𝜕𝜇𝐴𝑎

𝜇
)𝜕𝜈𝐷𝜈

𝑎𝑏𝛼𝑏(𝑥𝜇) +

𝑖�̅�𝑎(𝑥𝜇)𝜕𝜈(𝐷′
𝜈
𝑎𝑏

− 𝐷𝜈
𝑎𝑏)𝛼𝑏(𝑥𝜇) = 0.              (26) 

The property of 𝛼𝑏(𝑥𝜇) can be determined by 

taking 𝛿ℒ𝛼 = 0 so that equation (22) is fulfilled, so 

that  

𝑘𝛿ℒ𝛼 = −𝑔2𝑓   𝑐𝑏
𝑎 𝑓   𝑒𝑑

𝑏 𝜕𝜈 (𝐴𝜈
𝑑𝛼𝑒(𝑥𝜇)𝛼𝑐(𝑥𝜇)) +

𝑔𝑓   𝑏𝑐
𝑎 𝜕𝜈 ((𝜕𝜈𝛼𝑏(𝑥𝜇)) 𝛼𝑐(𝑥𝜇))              (27) 

where 𝑘 = 𝑖𝑛�̅�𝑎†
, 𝑛 is the 𝛼𝑏(𝑥𝜇) field 

normalization coefficient. Using 

𝑓𝑎𝑏𝑐𝑓𝑐𝑑𝑒 = −
1

2
𝑓𝑗𝑏𝑑𝑓𝑗𝑎𝑒 =

1

2
𝑓𝑗𝑏𝑑𝑓𝑎𝑗𝑒      (28) 

or 

𝑓   𝑐𝑏
𝑎 𝑓   𝑒𝑑

𝑏 = −
1

2
𝑓   𝑐𝑒

𝑗
𝑓𝑗   𝑑

 𝑎 =
1

2
𝑓   𝑐𝑒

𝑗
𝑓   𝑗𝑑

𝑎 ,   (29) 

then 

𝑘
𝛿ℒ𝛼

𝑔
= −

1

2
𝑔𝑓   𝑗𝑑

𝑎 𝜕𝜈 (𝐴𝜈
𝑑 (𝑓   𝑐𝑒

𝑗
𝛼𝑒(𝑥𝜇)𝛼𝑐(𝑥𝜇))) +

𝑓   𝑏𝑐
𝑎 𝜕𝜈 ((𝜕𝜈𝛼𝑏(𝑥𝜇)) 𝛼𝑐(𝑥𝜇)).              (30) 

The field (𝑓   𝑐𝑒
𝑎 𝛼𝑒𝛼𝑐) is substituted in the equation 

of motion of the field 𝛼 
𝑎(𝑥𝜇) i.e. eq. (22), so that 

one obtains 

−𝑔𝑓   𝑗𝑑
𝑎 𝜕𝜈 (𝐴𝜈

𝑑(𝑓   𝑐𝑒
𝑗

𝛼𝑒𝛼𝑐)) =

𝜕𝜈𝜕𝜈(𝛿𝑗
𝑎𝑓   𝑐𝑒

𝑗
𝛼𝑒𝛼𝑐).               (31) 

Substituting equation (31) in equation (30) we get 

𝑘
𝛿ℒ𝛼

𝑔
= −

1

2
𝑓   𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) +
1

2
𝑓   𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) −
1

2
𝑓   𝑏𝑐

𝑎 𝛼𝑏(𝜕𝜈𝜕𝜈𝛼𝑐) +
1

2
𝑓   𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑏)𝛼𝑐.               (32) 

Equation (32) gives two possible relations between 

two parameter fields 𝛼𝑏, which are Grassmann even 

or Grassmann odd.  

 

For Grassmann even with commutation 

relations [𝛼𝑏 , 𝛼𝑐] = 0, the 𝑓𝑏𝑐
𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) and 

𝑓𝑏𝑐
𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) parts will satisfy 

𝑓𝑏𝑐
𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) = 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑐)(𝜕𝜈𝛼𝑏) =

−𝑓𝑐𝑏
𝑎 (𝜕𝜈𝛼𝑐)(𝜕𝜈𝛼𝑏) = −𝑓𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐),       (33) 

Likewise, the 𝑓𝑏𝑐
𝑎 𝛼𝑏(𝜕𝜈𝜕𝜈𝛼𝑐) and 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑏)𝛼𝑐 

parts will satisfy 

𝑓𝑏𝑐
𝑎 𝛼𝑏(𝜕𝜈𝜕𝜈𝛼𝑐) = 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑐)𝛼𝑏 =

−𝑓𝑐𝑏
𝑎 (𝜕𝜈𝜕𝜈𝛼𝑐)𝛼𝑏 = −𝑓𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑏)𝛼𝑐,             (34) 

so it gives  

𝑘
𝛿ℒ𝛼

𝑔
= 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) + 𝑓𝑏𝑐
𝑎 (𝜕𝜈𝜕𝜈𝛼𝑏)𝛼𝑐 .   (35) 

From 𝛿ℒ𝛼 = 0, one gets 

𝜕𝜈 ((𝜕𝜈𝛼𝑏)𝛼𝑐) = 0.  (36) 

Based on equation (36), ℒ𝛼 is generally not 

invariant. This shows that the relations between 𝛼𝑏 

and 𝛼𝑐 are not commutative. 

 

On the other hand for the Grassmann odd with anti-

commutation relations {𝛼𝑏 , 𝛼𝑐} = 0, the 

𝑓𝑏𝑐
𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) and 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) parts will 

satisfy 

𝑓𝑏𝑐
𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐) = −𝑓𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑐)(𝜕𝜈𝛼𝑏) =

𝑓𝑐𝑏
𝑎 (𝜕𝜈𝛼𝑐)(𝜕𝜈𝛼𝑏) = 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝛼𝑏)(𝜕𝜈𝛼𝑐)             (37) 

Likewise, the 𝑓𝑏𝑐
𝑎 𝛼𝑏(𝜕𝜈𝜕𝜈𝛼𝑐) and 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑏)𝛼𝑐 

parts will satisfy 

𝑓𝑏𝑐
𝑎 𝛼𝑏(𝜕𝜈𝜕𝜈𝛼𝑐) = −𝑓𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑐)𝛼𝑏 =

𝑓𝑐𝑏
𝑎 (𝜕𝜈𝜕𝜈𝛼𝑐)𝛼𝑏 = 𝑓𝑏𝑐

𝑎 (𝜕𝜈𝜕𝜈𝛼𝑏)𝛼𝑐,             (38) 

so that 

𝑘
𝛿ℒ𝛼

𝑔
= 0.                 (39) 

Based on equation (39) it is clear that the 𝛼𝑏 

parameter fields satisfy Grassmann odd algebra. 

 

The gauge transformation with Grassmann 

odd parameters is called the BRST transformation. 

The properties of 𝛼𝑎 will make ℒ𝛼 invariant so that 

its addition to the total Lagrangian is valid and 

provides equations of motion that satisfy the 

conditions in equation (22) so that ℒ𝐺𝐹 is also 

invariant. Because the 𝛼𝑎 field does not appear in 

experiment, the 𝛼𝑎 field (or which corresponds to 

the 𝛼𝑎 field) is called the ghost field. For example, 

taking 𝑐𝑎(𝑥𝜇) = −
1

𝑔
𝛼𝑎(𝑥𝜇) will make equation 
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(22) the ghost field equation of motion with 

Lagrangian 

ℒ𝑔ℎ = −𝑖𝑐̅𝑎(𝑥𝜇)𝜕𝜈𝐷𝜈
𝑎𝑏𝑐𝑏(𝑥𝜇),             (40) 

which is invariant because 𝛼𝑎 and 𝑐𝑎 have the same 

properties. Therefore an effective Yang-Mills 

Lagrangian is given by equation (13). 

 

 

BRST SYMMETRY 
 

BRST Transformation 
 

Here we will apply the BRST (Becchi-

Rouet-Stora-Tyutin) transformations to the gauge 

field (Yang-Mills field) and matter field 𝜓. The 

gauge transformation for the potential field 𝐴𝜇
𝑎 is 

given by equations (1) and (2), while for the matter 

field ψ is given by [1, 2] 

𝛿𝜓 = − 𝑖𝑡𝑎𝛼𝑎(𝑥𝜇)𝜓              (41) 

𝛿(𝜕𝜇𝜓) = −𝑖𝜕𝜇(𝑡𝑎𝛼𝑎(𝑥𝜇)𝜓)             (42) 

The BRST transformation is based on gauge 

transformation with Grassmann odd transformation 

parameters [5, 7], as 

𝛿𝐵𝜓 = −𝑖𝑔𝑡𝑎𝜂𝑎(𝑥𝜇)𝜓              (43) 

𝛿𝐵(𝜕𝜇𝜓) = −𝑖𝑔𝜕𝜇(𝑡𝑎𝜂𝑎(𝑥𝜇)𝜓)            (44) 

𝛿𝐵(𝐴𝜇) = −𝑡𝑎𝐷𝜇
𝑎𝑏𝜂𝑏(𝑥𝜇)             (45) 

𝛿𝐵(𝐴𝜇
𝑎) = −𝐷𝜇

𝑎𝑏𝜂𝑏(𝑥𝜇)             (46) 

with a mathematical relation, for example, 

𝜂𝑎(𝑥𝜇) = −𝑐𝑎(𝑥𝜇) =
1

𝑔
𝛼𝑎(𝑥𝜇). This relation is 

not unique, provided that the gauge fixing 

Lagrangian invariant conditions are fulfilled, in the 

case of the Lorenz gauge given by equation (22). 

Any Lagrangian that is invariant to the gauge 

transformation will also be BRST invariant. In the 

BRST transformation, the properties of the 

transformation parameters are also extended by 

making the BRST transformation parameters 

transformed as 𝛿𝐵(𝜂𝑎(𝑥𝜇)) ≠ 0 [5]. 

 

Based on the Grassmann odd properties of 

the parameters 𝜂𝑎(𝑥𝜇) and the Lie algebra of the 

BRST transformation generator, the BRST 

transformation generators satisfy 𝑡𝑎𝑡𝑏 = −𝑡𝑏𝑡𝑎. The 

BRST transformation requires 𝛿𝐵𝛿𝐵 ≡ 0, known as 

the nilpotent property [5]. Because of this nilpotent 

property, 𝛿𝐵 acts as a Grassmann odd object. This 

has the advantage that any Lagrangian with a BRST 

variation form will have an invariant BRST action. 

From the nilpotent properties, 𝛿𝐵(𝛿𝐵𝜓) and 

𝛿𝐵 (𝛿𝐵(𝐴𝜇
𝑎)), we can produce the expression for 

the transformation parameter 𝜂𝑎(𝑥𝜇) in the form of 

BRST variation. 

 

For 𝛿𝐵(𝛿𝐵𝜓) it will give  

𝛿𝐵(𝛿𝐵𝜓) = −𝑖𝑔𝑡𝑎 (𝛿𝐵(𝜂𝑎) −
1

2
𝑔𝑓𝑏𝑐

𝑎 𝜂𝑏𝜂𝑐) 𝜓    (47) 

and for gauge field, it will give  

𝛿𝐵 (𝛿𝐵(𝐴𝜇
𝑎)) = 𝐷𝜇

𝑎𝑗
(−𝛿𝐵 (𝜂𝑗(𝑥𝜇)) +

1

2
𝑔 (𝑓𝑏𝑐

𝑗
𝜂𝑏(𝑥𝜇)𝜂𝑐(𝑥𝜇))).              (48) 

From these two results 𝛿𝐵𝛿𝐵 will only vanish for all 

fields if 

𝛿𝐵(𝜂𝑎(𝑥𝜇)) =
1

2
𝑔𝑓𝑏𝑐

𝑎 𝜂𝑏(𝑥𝜇)𝜂𝑐(𝑥𝜇)      (49) 

Because the ghost field 𝑐𝑎(𝑥𝜇) = −𝜂𝑎(𝑥𝜇) has the 

same properties (Grassmann Odd) then 

𝛿𝐵(𝑐𝑎(𝑥𝜇)) = −
1

2
𝑔𝑓𝑏𝑐

𝑎 𝑐𝑏(𝑥𝜇)𝑐𝑐(𝑥𝜇)  (50) 

 

 

Effective BRST Lagrangian  
 

Having obtained expression of BRST 

transformation parameters 𝜂𝑎(𝑥𝜇) and ghost field 

𝑐𝑎(𝑥𝜇) in 𝛿𝐵(𝜂𝑎(𝑥𝜇)) and 𝛿𝐵(𝑐𝑎(𝑥𝜇)), now, the 

ghost field and the anti-ghost field are treated as an 

independent field. Define 

𝛿𝐵(𝑐̅𝑎(𝑥𝜇)) = 𝐵𝑎(𝑥𝜇)  (51) 

where 𝐵𝑎(𝑥𝜇) is a scalar field, Lautrup-

Nakanishi auxiliary field [6, 7]. Using the 

nilpotent property of the BRST transformation  

𝛿𝐵(𝐵𝑎(𝑥𝜇)) = 𝛿𝐵 (𝛿𝐵(𝑐̅𝑎(𝑥𝜇))) = 0.  (52) 

 

That is, it can be added to any Lagrangian 

term which is a variation of BRST [6], so that 

ℒ = ℒ𝑌𝑀 + 𝛿𝐵𝒪.  (53) 

Here ℒ𝑌𝑀 is  BRST invariant because it is gauge 

invariant. The Lagrangian term 𝛿𝐵𝒪 corresponds to 

the fixing of the gauge on the Yang-Mills field. 

Choose 

𝒪(𝑥𝜇) = 𝑐̅𝑎(𝑥𝜇) [−
1

2
𝜉𝐵𝑎(𝑥𝜇) + 𝑖𝐺𝑎(𝑥𝜇)]       (54) 

where 𝐺𝑎(𝑥𝜇) is the gauge fixing term [6]. For 

example, using Lorenz gauge 𝐺𝑎(𝑥𝜇) = 𝜕𝜇𝐴𝜇
𝑎, 

then 

𝛿𝐵𝒪(𝑥𝜇) = (𝛿𝐵𝑐̅𝑎) [−
1

2
𝜉𝐵𝑎(𝑥𝜇) +

𝑖𝜕𝜇𝐴𝜇
𝑎] − 𝑐̅𝑎(𝑥𝜇) [−

1

2
𝜉(𝛿𝐵𝐵𝑎(𝑥𝜇)) +

𝑖𝜕𝜇(𝛿𝐵𝐴𝜇
𝑎)].                      (55) 

Therefore,  

𝛿𝐵𝒪(𝑥𝜇) = −
1

2
𝜉𝐵𝑎𝐵𝑎 + 𝑖𝐵𝑎𝜕𝜇𝐴𝜇

𝑎 −

𝑖𝑐̅𝑎(𝑥𝜇)𝜕𝜇 (𝐷𝜇
𝑎𝑏𝑐𝑏(𝑥𝜇)).              (56) 

 

This additional Lagrangian term will give 

the equation of motion for the field 𝐵𝑎 i.e. 
𝜕(𝛿𝐵𝒪(𝑥𝜇))

𝜕(𝐵𝑎(𝑥𝜇))
= 𝜉𝐵𝑎(𝑥𝜇) − 𝑖𝜕𝜇𝐴𝜇

𝑎 = 0      (57) 

By substituting eq. (57) in eq. (56) it is obtained 
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𝛿𝐵𝒪(𝑥𝜇) = −
1

2𝜉
(𝜕𝜇𝐴𝜇

𝑎)(𝜕𝑣𝐴𝑎
𝜈 ) −

𝑖𝑐̅𝑎(𝑥𝜇)𝜕𝜇 (𝐷𝜇
𝑎𝑏𝑐𝑏(𝑥𝜇))              (58) 

With the gauge fixing Lagrangian is the same as 

equation (20) and the ghost field Lagrangian is the 

same as equation (40). Thus, the effective 

Lagrangian which is BRST invariant for the Yang-

Mills field is the Lagrangian that has been shown in 

equation (13). 

 

In addition, through the Faddeev-Popov 

method on the Yang-Mills and by gauge fixing the 

Lagrangian by inserting the BRST invariant identity  

1 = ΔF(𝐴𝜇
𝑈) ∫ 𝐷𝜂 𝛿(𝐹𝑎[𝐴𝜇

𝑈]) =

ΔF(𝐴𝜇) ∫ 𝐷𝜂 𝛿(𝐹𝑎[𝐴𝜇
 ])              (59) 

a propagator with the same form in equation (10) 

will be obtained with the effective Lagrangian given 

by equation (11). The matrix 𝑀𝑎𝑏 will be as in 

equation (12) so that the effective Lagrangian will 

turn into equation (13).  

 

 

CONCLUSION 
 

The least action principle gives the 

Grassmann odd properties of the ghost fields and 

their relations to the gauge transformation and 

BRST transformation parameters. This relations is 

not unique but must make the effective Lagrangian 

invariant conditions fulfilled. It has also been 

proven that by applying the Faddeev-Popov method 

to the Lagrangian Yang-Mills in BRST symmetry, 

the ghost field expression is obtained. 

The least action principle, BRST variations 

and path integrals provide the same effective 

Lagrangian. This shows that the least action 

principle method is valid to be used in finding 

relations between ghost fields and transformation 

parameters. Also in BRST symmetry, path integral 

quantization of the gauge field with constraints will 

provide the same propagator as the effective 

propagator in gauge symmetry. This shows that the 

effective Lagrangian is BRST invariant and fulfills 

the path integral quantization. For further research, 

we need to explore the canonical quantization of the 

effective Lagrangian, BRST symmetry and its 

relations to the Noether current, and BRST 

Hamiltonian formalism. 
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