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Abstract 

The behavior of large deformation beam structures can be modeled based on non-linear geometry due to geometric 

nonlinearity mid-plane stretching in the presence of axial forces, which is a form a nonlinear beam differential equation 

of Duffing equation type. Identification of dynamic systems from nonlinear beam differential equations for 

deterministic and chaotic responses based on time history, phase plane and Poincare mapping. Chaotic response based 

on time history  is very sensitive to initial conditions, where small changes to initial terms leads to significant change in 

the system, which in this case are displacement x (t) and velocity x’(t) as time increases (t). Based on the phase plane, it 

shows irregular and non-stationary trajectories, this can also be seen in Poincare mapping which shows strange attractor 

and produces a fractal pattern. The solution to this Duffing type equation uses the Runge-Kutta numerical method with 

MAPLE software application.  

 

Keywords: Large displacement, Duffing equation, deterministic, chaos, Runge-Kutta, time history, phase plane, 
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INTRODUCTION 
 

In general, real conditions of structural 

systems are mostly non-linear to a certain extent, in 

special cases it is simplified into linear system. In 

the liner system, causes and effects are linearly 

related, whereas in nonlinear system the relation is 

not comparable. The general form of differential 

equation which states non-linear vibration system is 

as follows [20][24]; 

 
2

2
( , , ) 0

d x dx
f x t

dt dt
+ =   (1) 

Dynamic analysis of non-linear structure 

systems in time history, can be deterministic, 

chaotic, and stochastic. Chaos response might be a 

special case of deterministic or stochastic response. 

In deterministic response, the behavior of the system 

in a long space of time can be well predicted in a 

closed form. In chaotic response, the behavior is 

very sensitive to the system initial conditions, where 

two conditions with insignificant difference of 
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initial conditions will evolve into two far different 

circumstances. 

In this study, the behavior of non-linear beam 

that received tension axial force (N) on pin-roller 

support is observed. Numerical simulation uses 

variations in tension axial load, and initial 

conditions of support displacement x (0), with the 

aim to understand beam behavior based on 

displacement response and velocity in deterministic 

and chaotic perspective. 

 

NON-LINEAR BEAM DIFFERENTIAL 

EQUATION 
 

By reviewing a beam on pin-roller support 

experiencing initial axial force Ns (tension or 

compression) according to Figure (1). The beam 

element experiences shear force (Q), moment (M), 

and total axial force N. N = Ns + Nd, with Ns is the 

total of static axial force and Nd is axial force due to 

vibration. Dynamic equilibrium equation is as 

follow [10]; 

( ) 0s d

M v
Q N N

x x

 
+ − + =

                         
(2) 
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Figure 1. Vibrating beam equilibrium system with axial force 

 

By solving equation (2) and (3), obtained; 

( )
2 4 2

2 4 2
,

v v v v
A c EI N f x t

t t x x


   
+ + − =

          
(4) 

The first, second, and third terms on the left side of 

the equation is related to the linear behavior of the 

Euler-Bernoulli Beam Theory, while the fourth term 

is non-linear component due to axial force parallel 

to the beam. Axial force due to N, 

= +s dN N N                                                        (5) 

Axial force Nd [21], 
2

0
2

 
=  

 

L

d

EA v
N dx

L x
 (6) 

Therefore, axial force due to N according to 

equation (5) and equation (6) can be written as; 
2

0
2

 
= +  

 

L

s

EA v
N N dx

L x
 (7) 

By substituting equation (7) to equation (4), the 

non-linier beam differential equation with axial 

force Ns which can be compression axial force (+N) 

or tension axial force (-N). 

( )

2 4

2 4

2 2

2

0

,
2

L

s

v v v
A c EI

tt x

EA v v
N dx P x t

L x x


  

+ +
 

   
− + =  

    


 (8) 

Equation (8) might be solved in a form of eigen-

function [6][7][17]: 

 ( ) ( ) ( )
1

,


=

=  n n

n

v x t x q t   (9) 

By Galerkin process [19][28]; 

 ( ) ( ) 0 1,2,3,...= = n

D

R x W x dx n (10) 

Here D states the domain of structures being 

reviewed. Wn is weighting function, Rn is residue. 

In Galerkin method, experiment function is the same 

as weighting function, hence; 

 1,2,3,...=  =n nW n               (11) 

According to equation (10) and equation (11) then 

obtained: 

 ( ) ( )
0

0 1,2,3,... = =
L

nR x x dx n         (12) 

Solution of equation (8) according to the equation 

(9, 10, 11, 12) for the first mode review (n = 1) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( )
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cos 0
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d d
A q t x c q t x

dtdt

d
EI q t x
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d EA d
q t x Ts q t x dx

L dxdx

F t

  + 

+ 

  
+  +   

   

−  =



(13) 

With limit conditions according to Figure 1 : 

 ( ) ( )0, 0 ; '' 0, 0 = =  = =x L x L
         

(14) 

Hence, obtained second-order differential equation 

for mode 1 ; 
4

3 2

4
3

3

1 1
( ) ( ) 1 ( )

2 2 2

( ) cos( )
8
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(15)        
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4
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=  =  

  

 (16) 

On equation (15) Ts will be positive if the axial 

force is compression force and will be negative if 

the axial force is tension force. Therefore, 
3

1 3( ) ( ) ( ) ( ) cos( )+  + = Tmq t cq t k q t k q t F t     
(17) 

Or written as, 
2 3( ) 2 ( ) ( ) ( ) cos( )+  + = n nq t q t q t q t F t     

(18) 

 

Solution of Vibration Differential Equations 

The solution of linear differential equations 

generally uses analytical methods (exact methods 

and approaches) and numerical methods, but non-

linear differential equations will be more easily 

solved using approach method and numerical 

method, in many cases numerical method is widely 

used especially the Runge-Kutta method. In Runge-

Kutta method [24], second-order differential 

equations are first reduced to two first-order 

equations. According to equation (18), which can be 

written as follow; 
2 3; cos( ) 2= =  − − −n nq r q F t q q q       

(19) 

Taking the equation is reduced to two first-

order equations; 

 ; ( , , )= =q r r f q r t                    (20) 



IJP Volume 30, Number 2, 2019 

 

16 

For the application of Runge-Kutta numerical 

method, MATLAB software can be used with the 

code of ode45 and MAPLE with rkf45. 

 

DINAMYC SYSTEM IDENTIFICATION 

 

Deterministic Response  

Deterministic response is a process where 

momentary values and long-term characteristic can 

be determined or predicted in the domain of space 

and time. Deterministic response can be identified 

using the quantitative and qualitative method 

[1][2][13][14][15][23]. Quantitative identification 

uses 1). Frequency response, 2). Time history 

response, and qualitative identification uses (1). 

Phase plane history, (2). Poincare Mapping 

(Poincare map), and (3) Fourier Spectrum. Time 

history response is the solution of non-linear and 

linear differential equations obtained from analytical 

and numerical methods. Phase plane is used to 

identify the dynamic system behavior, where the 

motion equation of the dynamic system does 

explicitly contain time called the autonomous 

system. Figure (2) shows the trajectory of linear 

vibration equations, which is a certain ellipse for a 

total energy E from kinetic and potential energy of 

the system: 

 2 2;
2 2

= =p k

k m
E a E b  (21) 

P
( )b 2E m=

( )a 2E k=

r q=

q

 
Figure 2. Phase Diagram 

 

According to equation (18), the phase plane can be 

written in two first-order equation. As the Poincare 

mapping uses; 

 ( )2 3; cos

1

= = = − − + 

=

nq r r q q q F t

t

 
(2) 

Started at t=t0 , points are plotted on a space phase 

surface with the interval period of T 

 
Figure 3. Poincare Mapping 

 

Power Spectrum (Fourier Spectrum) 

Another important identification method is power 

spectrum. Suppose a differential equation that has a 

solution of q(t) is dependent to time, which applies 

to all q ( . Fourier transformation Q 

(f) from q (t) is used to analyze the frequency, 

 ( ) ( ) 2



−

−

= 
iftQ f q t e dt                           (23) 

Where f is frequency in hertz (second/cycle). Given 

Q(f) for all f, hence q(t) can be solved using Fourier 

invers transformation 

 ( ) ( ) 2



−

= 
iftq t Q f e df               (24) 

Using Fourier approach; 

( )
1 1

2 2

0 0

− −
− −

= =

= = k n

N N
if t ikn N

k n s s n

n n

Q f q e T T q e
     (25) 

Hence power spectrum can be defined as; 

( )
21

=N kS k Q
N

                                 (26) 

 

Chaotic response 

The term “Chaos” was first popularized by 

Tien Yien Li and James Yorke in 1975. The term 

Chaos is defined as follows: 1). Sort of regularity 

without periodicity. 2). Random repetitive behavior 

in deterministic system 3). Simple model 

capabilities, which do not contain random elements, 

to produce highly irregular behavior. Chaos is a 

dynamic phenomenon. This phenomenon was first 

studied by Poincare (1854-1912). A well-known 

example of chaos problems is the weather behavior 

from Lorenz [12] with butterfly effect, where the 

consequence of the discovery is that "two conditions 

where the amount of difference is not significant at 

the beginning will evolve into two major differences 

in the future". 

In many cases, non-linear response is a 

chaotic symptom. Nowadays, this symptom is 

widely studied. Ueda describes chaotic phenomena 

in dynamic systems governed by Duffing equation 

in the late 1970s, which addresses the non-linear 

dynamic behavior related to chaotic symptoms [2]. 

Moon, Nayfeh, Awrejcewicz discussed Duffing 
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model on beam with the consequence of chaotic 

response [3][15][16]. 

The steps in qualitative and quantitative 

deterministic response might be followed to identify 

the system response of chaotic motions.  

 

CASE STUDY 

 

By reviewing continuous beam model that accepts 

axial loads according to equation (16-18), second 

order differential equation is obtained with third 

order nonlinear stiffness. Applying axial load 

variations during critical load condition on 

continuous beam model, Euler (Pcr): 

u, x

v, y

v(x)

P(x,t)

A B

L/2

L

E, I, A, 

Nx

 
Figure 4. Pin-roller support geometry with axial loads (Nx) 

 

As a sensitivity test, the initial conditions of 

displacement and speed is set to be; x (0) = and v (0) 

= 0, then it becomes; x (0) = 0.01 and v (0) = 0 

 
( ) ( ) ( )

( )

2
3

2
0.04436 0.4015

9.7941cos 0.50

d d
x t x t x t

dtdt

t

+ +

=

   (27) 

Runge-Kuta method, with Maple software (code 

rkf45), is used to solved equation (27). For initial 

conditions simulation type (1), x (0) = 0 and type 

(2), x (0) = 0.01. The solution of equation (27) 

according to figure (5a) shows that, at time t = 0 to t 

= 75 s, the effect of initial conditions is not 

significant for both initial conditions x (0) (types 1 

and 2), but as time increases, the condition of the 

system will be very different. By reviewing the 

phase space on Figure 5b, it shows that the non-

stationary pattern with time is elongated. According 

to historical time response (Figure 5a), the image 

phase space (5b) in the non-linear model (equation 

27) shows sensitive dependency to initial 

conditions. 

 
Figure 5a. Time history displacement 

 
Figure 5b. Phase Plane [ q(t) vs q’(t)] 

 

 
Figure 6a. Poincare Mapping 

 

 
Figure 6b. Fourier Spectrum 

 

That sensitive dependency, where only small 

changes to initial conditions, in fact significantly 

affects the system response; displacement x (t) and 

speed v (t) as time flows(t). This behavior is called 

chaotic symptoms. The chaotic symptoms can also 

be seen in the Fourier spectrum (6b) and Poincare 

mapping (6a) which shows strange attractors and 

fractal patterns with 50,000 points mapping. 

 

Bifurcation diagram 

With bifurcation diagram simulation, for critical 

load increasement of Per = 0.17, Euler critical load 

according to equation (16), Per = 610.69 kg. It can 

be seen that chaotic conditions occur when the load 

P = Pcr, and P> Pcr (see figure 7). The system 

returns to be deterministic after the load P> 800 kg. 



IJP Volume 30, Number 2, 2019 

 

18 

 
Figure 7. Bifurcation diagram with variations 

 in axial load 

 

Deterministic and chaotic response simulations 

As comparison of deterministic and chaotic 

responses, with simulation of variations in external 

loads according to the following equation (16-18) 

( ) ( ) ( )

( ) ( )

2

2

3

0.04436 0.3222

0.4015 3.2647cos 0.50

d d
x t x t x t

dtdt

x t t

+ −

+ =

          (28) 

( ) ( ) ( )

( ) ( )

2

2

3

0.04436 0.3222

0.4015 9.79415cos 0.50

d d
x t x t x t

dtdt

x t t

+ −

+ =

       (29)  

According to case 1 in equation (28), the change in 

initial condition, which is the displacement x (t) 

does not affect the response of the system even with 

a long period of time (Figure 8a). In case number 2 

of equation (29), with a slight change in the initial 

condition (displacement x (t)) ranging from x (0) = 

0.00 to x (0) = 0.01, the response of the two systems 

will vary over a long period of time (see Figure 8b). 

 

 
 

 

 

CONCLUSION 

 

Beams that receive axial loads, the stability 

problem is very dominant, in the case of static Euler 

bending (Pcr). In dynamic case, system response is 

the system parameter function, where system 

response can either be deterministic or chaotic 

response. In deterministic response, small changes 

in initial conditions have no effect on the response 

of the system as time increases. On the other hand, 

small changes in initial conditions of chaotic 

response will greatly affect the response of the 

system as time increases. Changes in initial 

conditions on beams are closely related to the 

application of construction that is method of 

construction, in this case is the displacement or shift 

in joints, or environmental influences such as 

temperature, wind load, earthquake and other 

disturbances. 
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