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Abstract 

The purpose of this paper is to present a simulation to the inversion methods applied to geophysical exploration. An 

application of Monte-Carlo, Metropolis, and Simulated Annealing techniques to 1-Dimensional gravity inversion in 

Bayesian framework has been studied. Differences between these methods are observed in both single parameter 

inversion and simultaneous multi parameter inversion. After selecting the best inversion strategy from the three methods, 

a further investigation was  investigated. Multi parameter inversion for two anomalies is simultaneously carried out and 

results are observed. The synthetical data of GRAV2DC free source were used instead of observed data. 
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INTRODUCTION 
 

In any physical system, the input and output 

parameters are linked by a physical relationship, 

which may be linear or non-linear. The forward 

modelling can then be defined in the most general 

sense as determining an output of a system with 

known input parameters to the system and known 

physical relationship. On the other hand, inverse 

modelling is defined as determining the input 

parameters by knowing the relationship between 

input and output and also the output. In yet another 

class of problems, the physical relation is determined 

by knowing the input and output to the system. In the 

equation below the input to the system is 𝑚, the 

output is 𝑑 and the physical relation is 𝐺 
 

( )mGd =  (1) 
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In context of geophysical exploration, the inputs to 

the system are known as model parameters, 𝑚 and 

the outputs are known as forward modelled data or 

synthetic data, 𝑑. In case of direct inversion,  

 

( )dGm g−=  where ( ) TTg GGGG
1−− =  (2) 

 

The operator, 𝐺, is a matrix and the model 

parameters, 𝑚 and the synthetic data, 𝑑 are vectors in 

discrete systems. In linear systems, a linear relation 

exists between 𝑚 and 𝑑 and 𝐺 is a linear operator. 

Using direct inversion is not possible in geophysical 

applications since the matrix 𝐺 is very large and 𝐺𝑇𝐺 

is not invertible. A iterative scheme is applied in 

which the misfit, i.e. residual between the observed 

data, 𝑑𝑜𝑏𝑠 , and the synthetic data, 𝑑, is minimized. 

Another approach is using the Bayesian 

framework in which instead of selecting a particular 

model which minimises the misfit, a probability 

distribution over the entire model space is obtained. 

Mathematically, 
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P(m | dobs ) =
P(m)P(dobs| |m)

P(dobs )
 (3) 

 

In which the LHS corresponds to the posterior 

probability distribution function (posterior pdf), 𝑃 
(𝑚) is the apriori pdf. Also if a Gaussian distribution 

is assumed, P(dobs |m)  can be expressed as 















 −
−=

2

2

|

2

1
exp)|(



dd
mdP

obs

obs
 (4) 

where 
2

. is the L2  norm and σ2 is the variance of 

observed data. 

 

 

EXPERIMENTAL METHOD 
 

The Monte-Carlo (MC), Metropolis, and 

Simulated Annealing (SA) methods were applied in 

these simulations. 

Monte Carlo methods are the class of 

inversion methods in which a model is randomly 

selected from the model space for computing 

synthetic data and the posterior pdf. Hence it is also 

known as random walk. In Markov Chain Monte 

Carlo methods, the selection of models is such that 

the posterior pdf is made as close as possible to the 

desired pdf. 

The Metropolis method differs from Monte 

Carlo in the sense that instead of selecting a model 

completely randomly, a new model is selected in the 

vicinity of the existing model and the transition from 

existing to new model is made with the probability: 

 

P(mnew |mold ) = min
1,P mnew | dobs( )
P mold | dobs( )

 (5) 

Hence even if the new model gives a larger misfit, it 

is selected with a probability: 
  (6) 
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  (6) 

if this ratio larger tahn a randomly selected number 

between 0 and 1, the transition is accepted else not. 

The SA method progressively deforms the shape of 

the pdf from prior pdf to posterior pdf by decreasing 

a parameter known as temperature. When the 

temperature is high (initially), all models are 

selected, even those with a larger misfit. As the 

temperature decreases in steps, fewer and fewer 

models are selected, only those which give a lesser 

misfit. Hence, it does not get trapped in the local 

minima like Metropolis. The expression for 

𝑃(dobs|m) is modified as 
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Where T, the temperature is decresed from high 

(1000) to low (1). (See The Algorithm of SA in the 

box below) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  The algorithm of simulated annealing. 

 

The above methods have been applied to a 

simple 1D gravity inversion problem. A square 

anomaly is considered buried in the subsurface. First, 

only a single parameter, density contrast, is inverted 

for. A unimodal solution is assumed. Due to lack of 

true data, a known true density contrast is taken and 

observed data computed. Then the density contrast is 

estimated randomly within bound limits. This forms 

our model space. The results of the three inversion 

methods are observed for inverting single parameter 

(density contrast of square anomaly) and then 

simultaneously for density and width of anomaly. 
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We used the square model of gravity 

modelling in order to build the synthetic data. The G 

is gravity constant (6.67 x 10-3 Ngr-2m2) Δρ is the 

density contrast, d is the width, and h1/h2 is the gap 

between the lower and upper shape. 

 

 

SIMULATIONS AND RESULTS 
 

By Using equation (8) we created the 

forward modelling of synthetic gravity data with 

random noise as our Observed data. 

Algorithm SIMULATED-ANNEALING 

Begin 

temp = INIT-TEMP; 

place = INIT-PLACEMENT; 

while (temp > FINAL-TEMP) do 

 while(inner_loop_criterion=FALSE) do 

  new_place = PERTURB(place); 

  ΔC =COST(new_place) COST(place); 

    

if (ΔC < 0) then 

   place = new_place; 

  else if (ANDOM(0,1) > e
-(ΔC/temp)

) then 

   place = new_place; 

  temp = SCHEDULE(temp); 

End. 
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Figure 2.  Gravity Anomaly model. 

 

With only single parameter inversion (density 

contrast), and we set the density contrast of observed 

model at 0.7 gr/cm3, then we obtain the probability 

as it is show in figure 3. 

 

 

a. Monte Carlo 

 

b. metropolis 

 

c. Simulated Annealing 

Figure 3.  The Posterior pdf obtained by Three Inversion 

Methods 
 

By performing the Three method, In 

unimodial solution testing the single inversion 

parameter, we can see that the posterior pdf has the 

high probability at 0.65-0.75 gr/cm3 which is very 

close to the desired target (0.7 gr/cm3).  

The further simulation of the inversion 

technique is done by performing simultaneous multi 

parameter (density contrast and width) inversion: 

True density contrast and width of the model are 0.7 

gr/cm3 and 4000 m. The result (in figure 4) show us 

the posterior probability of two parameters inversion 

in between 3500-4500 m for the width and near 0.7 

gr/cm3 for the density. 

 

 

a. Monte Carlo 

b. Metropolis 

 

Anomali

Surface

h1 h2

d

rho1 rho2

h1=2000 m;                
h2=3000 m;                
d=3000 m;                 

rho1=2.700;     %dolomite density g/cm
3

rho2=2.000;     %sand density     g/cm
3
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c. Metropolis 

Figure 4.  The Posterior pdf of two parameters inversion 

 

Only the Monte Carlo method are not able to 

show a good shape of bayesian distribution. The 

random walk of sampling method in monte carlo 

might be the main problem in the inversion process. 

 

Multi-Parameter Inversion for two square model 

 

The previous cases utilized a unimodal 

solution in the density contrast and width of a single 

anomaly. A single known density contrast and width 

was used as the real data. In this section, 

simultaneous inversion for density contrast and width 

of two square anomalies has been done. The real data 

that has been used here has been obtained by the 

freeware GRAV2DC that gives us the gravity 

anomaly response over a user defined subsurface 

model. Based on previous results, only simulated 

annealing has been used for inversion. 

 

 
 

Figure 5.  The synthetic data from the GRAV2DC software 

 

There are two models with different shape 

and density contrast. The main goal of this section is 

to predict the model in figure 5 with our gravity 

square model. The data from GRAV2DC software is 

transferred to MATLAB. In this case, we used 4 

parameters as our predictions (the density and width 

for each anomaly). The parameters for observed data 

(figure 5) are show in the Table 1. 

 

 
 

 

Table 1. The Parameter’s values of simulation anomalies 

 

Anomaly 1(blue) 2(orange) 

h1 3000 m 10000 m 

h2 55000 m 90000 m 

d 7000 m 5000 m 

Table of Prediction 

Density  0.5-0.7 gr/cm3 0.8-1 gr/cm3 

Width 5000-9000 m 3000-7000 m 

Temperature Tmax= 1000  Tmin=1 

 

We start with the temperature = 1000 and 

convergence is reached when temperature reaches 

less than 1. The red line in the figure 7 shows us the 

best fit model with the observation data after 1000 

iterations. This result is obtained when the 

temperature is equal to 0.043. We get the results of 

the inversion in figure 6. 

 

 
 

Figure 6.  The result of the inversion by SA method. 

 

The probability distribution for the square 

anomalies are obtained as follows (figure 7).  

 

 
a. anomaly 1 

 
b. Anomaly 2 

Figure 7. The probability distribution of anomalies with respect 

to the density contrast and width 



IJP Volume 30, Number 1, 2019 

 

 

5 

 

Ambiguity is observed and no single value of density 

contrast and width gives the maximum likelihood. 

The accepted parameter can be seen in the Table 2. 

 
Table 2. The accepted parameter’s values of simulation 

anomalies 

 

Anomaly 1(blue) 2(orange) 

Probability 0.9704 

Temperature 0.043 

Density  0.5309 gr/cm3 0.8825 gr/cm3 

Width 8813 m 5155 m 

 

On comparing the results listed in table 2 and 

table 1, we can see that our prediction value is good 

enough since the value of the probability is high 

(>90%). However, our prediction method is just a 

simple one. The real models (anomaly 1 and 2) are 

more complex with their polygonal shape. 

 

 

DISCUSSION 

 

It can be seen that the model density is high 

even in regions of very low probability in the Monte-

Carlo method. This is a result of completely 

stochastic sampling of the entire model space. This is 

improved in the Metropolis method where the model 

density is high only around the solution. In this case 

only a unimodal solution has been assumed. 

However, if there is multimodal solution then several 

runs of Metropolis with different initial starting 

models will have to be considered since Metropolis 

can get trapped in local minima. The MATLAB 

results from figures 3 – 4 show us that the Simulated 

Annealing method gives the best results since it 

accepts models with low likelihoods initially as 

opposed to the Metropolis method, where the success 

depends on the accuracy of the initial model. In case 

of multi-parameter inversion, ambiguity is observed 

in results. Ideally, a 3D scatter distribution should 

appear with a maximum at width = 4000 m and 

density contrast = 0.7 kg/m3. In figure 7, it can be 

seen that instead of a single value of density contrast 

and width, different combinations of density contrast 

and width give maximum likelihoods. Similar 

observations are made in this case. Hence ambiguity 

is observed. 

 

CONCLUSION 
 

Three different inversion methods – Monte 

Carlo, Metropolis and Simulated Annealing - have 

been tested on 1D gravity inversion problem for a 

square anomaly. First only a single parameter 

(density contrast) is inverted for.  The probability 

distribution is observed for the different inversion 

methods assuming a unimodal solution. 

Simultaneous multi-parameter inversion (density 

contrast and width) is also investigated and pdf of 

different methods is compared. It is concluded that 

Simulated Annealing gives the best results. In further 

applications, simulated annealing is used to invert 

simultaneously for density contrast and width of two 

square anomalies. The real data is used in this case is 

derived from GRAV2DC freeware which computes 

the gravity response over a user-defined subsurface 

model. Ambiguity is observed in the results. 
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