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Abstract 
Rayleigh-Taylor instability phenomena were encountered in science world, both on a small scale and large scale 
(interstellar gas). Rayleigh-Taylor instability is the interpenetration of material that occurs when a fluid is above the other 
fluid with smaller mass density. The fluid which was originally located in the upper part will continuously broke down 
and the void is filled by a fluid which was originally located in lower part, so it looks like a bubble. In computational 
fluid dynamic field, this phenomenon is one of the benchmarks used to test the performance of buoyancy force on a 
numerical method. On the particle method, particularly, the Rayleigh-Taylor instability has been successfully simulated 
using Moving Particle Semi-implicit (MPS) method. Similar to the MPS, on this study, the Rayleigh-Taylor instability 
between the silicon oil and water which driven by buoyancy force was simulated using finite volume particle (FVP) 
method. From the simulation results it can be concluded that the shape of the bubble produced in the present calculation 
is similar to the results observed in the experiments and methods of MPS. 
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INTRODUCTION∗ 
 

In the study of fluid, Rayleigh-Taylor 
instability phenomenon often encountered in the 
interaction of two different types of fluid density. 
This phenomenon occurs when a fluid is above the 
other fluid with smaller mass density. The fluid 
which was originally located in the upper part will 
continuously broke down and the void is filled by a 
fluid which was originally located in lower part, so 
it looks like a bubble. This phenomenon has been 
numerically simulated by a variety of methods 
including particle method such as Moving Particle 
Semi-implicit (MPS) method by S. Zhang et. al. [3].  

In the present study, the Rayleigh-Taylor 
instability between silicone oil and water was 
simulated by using the full Lagrangian method, 
finite volume particle (FVP), for the multi-phase 
flow and incompressible. 

 
                                                
∗ Corresponding author. 
   E-mail address: nura@fi.itb.ac.id 

 
Figure 1. Rayleigh-Taylor Instability 

 
FINITE VOLUME PARTICLE (FVP) 
METHOD 

 
In the FVP method, the numerical particles, which 
are used to discretize the governing equations, are 
assumed to occupy a certain volume, where the 
control volume of one moving particle is a circle in 
2D simulations: 

  S = 2πR, V = πR2 = Δl( )2  (1) 
where   𝑆,   𝑉,   𝑅, and ∆𝑙 are the particle surface 
area, the particle control volume, the radius of 
particle control volume and the initial particle 
distance, respectively. According to Gauss’s law, 
the gradient and Laplacian operators acting on 

 

Figure 3 Experiment of RTI with the Vessel of 02.02.04.0 ××  m in Size. 
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Figure 4 Calculation Results of RTI by Shirakawa. 

However Eq. (32) can’t prevent particles from clustering. Combining Eq. (24) and Eq. (32), we 

can obtain the following equation: 
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and 

121 =+αα                                                               (34) 

where 1α  and 2α  are 0.8 and 0.2 respectively in this study. These two coefficients were chosen in 

consideration of numerical stability.  

 

 Calculation Conditions 
 

The density and kinematic viscosity of Silicon oil are 31096.0 × kg/m3 and 5100.5 −

×  m2/s, 

respectively. Those of water are 3100.1 × kg/m3 and 6100.1 −

× m2/s. Kinematic viscosity between 
different kind fluid particles is defined as 
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arbitrary scalar function 𝜙 in the FVP method can 
be expressed by 
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where the gradient and Laplacian terms of particle  i  
can be approximated as 
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where 
 
φ

i
 is the approximation of φ  with respect 

to particle  i  and 
   
| !rij |  is the distance between 

particles  i  and  j , and   
!n  is the unit vector. The 

function value  φsur  on the surface of particle  i , can 
be evaluated using a linear function as 

   
φsur = φi +

φ j −φi

| !rij |
R             (6) 

The unit vector 
  
!nij  of distance between particles  i  

and  j  is defined as 

  

!nij =
!rij
!rij

=
!rj −
!ri( )
!rij

 (7) 

 

 
Figure 2. Neighbor particles of particle  i  in the cut-off radius 
 
The interaction surface  

ΔSij  between particle  i  and 

particle  j , can be estimated as 

 

ΔSij =
ω ij

j≠i∑ ω ij

S  (8) 

where  
ω ij  is the kernel function. It can be defined 

as 
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where  re  is the cut-off radius, which is chosen as 
4.1  Δl  for 2D system and 2.1  Δl  for 3D system. 
This cut-off radius is used to define the limitation 
area of neighboring particles around particle  i . 
Through these neighboring fluid particle 
interactions, the fluid movement and heat and mass 
transfer are modeled. The neighboring particle 
interactions schematically can be seen in Figure 
2. 
 
GOVERNING EQUATIONS 
 

The governing equations to be solved for 
incompressible fluids are the following Navier-
Stokes equation and the continuity equation: 

   
ρ D!u

Dt
= −∇p +∇(µ∇⋅ !u)+

!
fs +
!
fg

     (10) 

   ∇⋅ !u = 0   (11) 
 

where ρ  is the density,   
!u  is the velocity,  t  is the 

time,  p  is the pressure, µ  is the dynamic viscosity, 
 H  is the specific enthalpy,  k  is the thermal 
conductivity and  T  is the temperature. The third 
term 

  
!
f  in the right-hand side of Eq. (10) represents 

other forces per unit volume, such as surface tension 
and gravity. The integral form of Eqs. (10) and (11), 
respectively, are 
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By using the same approach as FVP method 
described in previous section, the integral form of 
Navier-Stokes equation, Eq. (12), can be rearranged 
as  
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With FVP method, the Eq. (12) can be discretized as 
D!u
Dt

!

"
#

$

%
&
i

= −
1

ρπR2 j=1, j≠i
∑ pi +

pj − pi
!rij

R
!

"

#
#

$

%

&
&
ΔSij

+
υ
πR2 j=1, j≠i

∑
!u j −
!ui
!rij

ΔSij +
!
f

            (15) 

 
SOLUTION ALGORITHM 
 
Pressure based solution algorithm 

There are several algorithms’ solutions to 
solve Navier-stokes equation. In the original 
FVP method, PISO algorithm, which pressure 
based with fully implicit algorithm, is used to 
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solve the problem. The disadvantage of PISO 
algorithm is consumed a lot of time. In the 
present study, for time efficiency, we adopted 
explicit-implicit algorithm to solve the Navier-
Stokes equation’s problem.  

The flowchart of the explicit-implicit 
algorithm can be seen in Figure 3. In the 
explicit step, particle’s velocity is explicitly 
updated with the viscosity, surface tension and 
external forces as  
* 2ˆ1 ˆ[ ]n n n nu u t u u g fµ

µ
ρ ρ

= + Δ ∇ ⋅∇ + ∇ + +
vv v v v v

 (16) 

Then particle’s position is also explicitly 
updated as 
* *nr r tu= + Δ
v v v

            (17) 
In the next step, particle’s velocity is 

updated with the solved pressure equation as 
1 * 11n nu u t p

ρ
+ += −Δ ∇

v v
            (18) 

Then particle’s position is also updated as 
1 1n n nr r tu+ += + Δ

v v v
            (19)  

 
 

Fig. 3.  Explicit-implicit algorithm. 
 
Combine-Unified Procedure (CUP) method 

To solve the pressure passion equation, a 
CUP method is introduced to the FVP method. 
The key of CUP method is linking the changes 
in pressure and density by introducing a sound 
speed and deducing an implicit expression for 
the pressure (Xiao et al, 1997). From the 
continuity equation, it can be derived as 
D u
Dt
ρ

ρ= − ∇⋅
v

              (20) 

It can be further arranged as 

  1 1 1D Dp Deu
Dt p Dt e Dt
ρ ρ ρ

ρ ρ ρ
∂ ∂

∇⋅ = − = − −
∂ ∂

v            (21) 

where e is the internal energy. For the 
incompressible flows, assuming there are no 
heat conduction and dissipation, then 

  0De
Dt

=               (22) 

 
In addition, it is known that the sound speed can 
be calculated as 

   
2
s

pc
ρ
∂

=
∂               (23) 

Therefore, Eq. (20) is changed into 
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where 2
sc  is the smoothed square value of the 

sound speed. Eq. (18) can be rewritten as 

  1 * 11[ ]n nu u t p
ρ
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v v

           (25) 

According to Eq. (24), it is expressed by 
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Combining Eqs. (25) and (26), we can get 
following equation for the pressure as 

1
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In order to obtain a symmetrical formulation, 
Eq. (27) can be changed into 
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where *p  is initially set to be equal to np , and 
**p  is solved with the above equation. The 

value of **p  is then given to *p  and Eq. (27) is 
solved again. As a result, iteration is generated. 
After convergent, **p  is equal to *p , and this 
value is given to 1+np and can be solved by the 
Incomplete Cholesky Conjugate Gradient 
(ICCG) algorithm. 
 
SIMULATION CONDITIONS 
 

Simulation geometry of Rayleigh-Taylor 
instability using FVP method can be seen in figure 
4. The systems consist of two fluids; water and 
silicon oil. Both of them placed on a 0.1m x 0.1m 



IJP Volume 26, Number 2, 2015 
 

 

49 

49 

tank. The 2 dimensions simulation is conducted with 
the conditions of each fluids shown in Table 1. 
 
Table 1.  Simulation conditions 
 

 Mass density 
(Kg/m3) 

Surface 
tension (N/m) 

Viskosity 
(m2/s) 

Silicon Oil 0.96x 103 0.0527 5.0 x 10-5 
Air 1.0x103 0.0728 1.0x10-6 

 

 
 

Fig. 4.  Simulation geometry. 
 

RESULT AND DISCUSSIONS 
 

Similar to previous work”s result, MPS 
method, the phenomena of Rayleigh-Taylor 
instability can be simulate successfully using FVP 
method as the results shown in Table 2. 

 
Table 2.  Simulation results 
 

 0.3 s 0.4 s 

FVP 

  

MPS 

  
 

Table 2 shows the comparasion of FVP and 
MPS method results on Rayleigh-Taylor Instability. 
It can be seen that both on FVP and MPS method, 
the bubble as sign of Rayleigh-Taylor Instability is 
shaped perfectly after 0.4 s calculation time. 

 
CONCLUSION 
 

From this study, we can conclude that the 
Rayleigh-Taylor Instability as one of phenomena on 
the study of fluid can be simulate successfully using 
FVP method. 
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