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Abstract 
The aim of this project is to solve the Darcy’s Equation using the finite difference (FD) method. We test the governing 
equation by investigating a saturated petroleum reservoir in two-dimensional (2-D) system to describe the distribution 
of the pressure within the reservoir. We assume that the velocity of the fluid (oil) is incompressible and relatively slow 
as a consequence that the system is saturated. The model used is a flow in steady state 2-D porous media. We apply the 
modified form of FN method with Gauss-Seidel to improve the precision of the simulation. 
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INTRODUCTION* 
 

A petroleum reservoir, or oil and gas 
reservoir, is a subsurface chamber of hydrocarbons 
contained in porous or fractured rock formations. 
They are trapped by overlying rock formations with 
lower permeability. It is important to know the 
characteristic of the reservoir including the physical 
and the geometrical changing time by time. 
Therefore, many scientist and engineer have been 
conducted research to draw some information about 
the reservoir behavior. It is popular as called as 
reservoir engineering. 

In this paper, we simulated a forward 
modeling of the petroleum reservoir based on the 
fluid flow in porous media. The Darcy’s law 
equation is the main factor in this simulation. 
Reservoir engineering is based on the understanding 
of fluid flow in porous media. Because the oil 
chamber is accumulated in a porous, we must have 
some data about permeability, porosity, saturation, 
and relative permeability for oil, for a range of 
process conditions (Thamir A. Hafedh et. al., 2004). 
We distinguished the parameters into static 
parameters (permeability & porosity) and dynamic 
parameter (pressure). The dynamic parameter is a 
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time dependent variable which is influenced by the 
static parameters. 

Numerical simulation is widely used for 
predicting reservoir behavior and forecasting its 
performance. However, the mathematical model used 
in the simulation requires the knowledge of 
subsurface properties. Since petroleum reservoirs are 
relatively inaccessible for sampling, the measurable 
quantities at the well provide the essential 
information for reservoir description (Ewing, et. al., 
1995). This paper is presented to develop a simulator 
of numerical modeling for drawing the pressure 
distribution of the hydraulic head on well injected 
into the reservoir. 

 
THEORY 

 
 Darcy’s law is an equation that describes the 
flow of a fluid through a porous media. The law was 
formulated by Henry Darcy based on the result of 
experiment on the flow of water through beds of 
sand. (Darcy, 1856). It also  can be derived from the 
Navier-stokes equation via homogenization which is 
analogous  to Fourier’s law in heat conduction and 
Fick’s law in diffusion. 

Darcy's law is a simple proportional 
relationship between the instantaneous discharge rate 
through a porous medium, the viscosity of the fluid 
and the pressure drop over a given distance. 
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Q = −
kA
µ
∇Ph  (1) 

Where Q is the total discharge in unit volume per 
second (m3/s) . k is the intrinsic permeability of the 
medium. A is a unit of area of the medium passed by 
the fluid (m2) and		∇𝑃$ is the gradient of hydraulic 
pressure (Pa/m) and µ is the viscosity dynamic 
(Pa.s). by dividing both side in the equation (1) with 
A, therefore 
 

q = Q
A
= −

k
µ
∇Ph  (2) 

 
Where q is the flux (m/s).  however, q is not meant as 
velocity. Otherwise the fluid velocity v is related to 
the Darcy flux q divided by the porosity n. 
 

v = q
n

 (3) 

by merging the equation (2) and (3), then 
 

v = − k
nµ

∇Ph = −K∇Ph  (4) 

Where K is Hydarulic Conductivuty. K is also equal 
to (Daene C. Mckinney) 
 

K =
kρg
µ

=
k
nµ

 (5) 

 
ρ is density of medium (kg/m3) and g is gravity 
constant (9,8 m/s2) . 
 There were some assumption in this 
simulation, first, This equation are valid for water 
flow through an aquifer with the value of velocity are 
sufficiently slow (Singarimbun, 1996) and laminar 
(low Reynold number). So, the kinetic energy are 
ignored in the reservoir. second we simplified the 
equation for the Hydraulic Pressure distribution by 
assuming that the velocity is too slow and limited to 
zero. We use the 2-D distribution in x & y direction 
and assume that the pressure distribution does not 
depend on the z direction (does not change by depth). 
We ignored the mass and energy balance as a 
consequence that the reservoir is saturated with no 
mass transport. Third, the dimensional velocity 
gradient around and within the well are not zero 
(compressible) but equal to a constant value. 
However,  when the oil still at the reservoir chamber, 
the gradient is zero (incompressible). 
 
 
 
 

EXPERIMENTAL METHOD 
 

Mathematical Model 
In the previous work conducted by Thamir 

A. Hafedh et. al. (2004) yielded that the 
compressibility of fluid can be quantified by the 
divergence of the velocity vx + vy. this  measures how 
much mass enters a small volume in a given unit of 
time. 
 

 
 
Fig. 1.  Incompressible and Irrotational fluid flow 
 
According to Figure 1., the flow in and out of 
volume is 

 
dxdyV = ρVdy v(x + dx, y)− v(x, y)( )dt  

+ρVdx v(x, y+ dy)− v(x, y)( )dt  (6) 
 
if  dxdyV = 0, the equation (6) represents the 
incompressible system 
 

ρ vx + vy( ) = ρ ∂v
∂x
+
∂v
∂y

⎛

⎝
⎜

⎞

⎠
⎟= 0  (7) 

 
A fluid with no circulation or rotation can be 

described by the curl of the velocity vector. In 2-D 
the curl of (u, v) is vx - vy. Also the discrete form of 
this gives some insight to the meaning of this. The 
circulation or momentum of the loop about the 
volume (dx dy T) with cross sectional area A and 
density ρ is 
 

ρAdy v(x + dx, y)− v(x, y)( )dt
 +ρAdx v(x, y+ dy)− v(x, y)( )dt  (8) 

 
for irrotational condition (dxdyV = 0) the equation 
(8) become 
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 ρ vx − vy( ) = ρ ∂v
∂x
−
∂v
∂y

⎛

⎝
⎜

⎞

⎠
⎟= 0  (9) 

 
For 2-D system of Darcy’s law, the equation (3) 
could become 
 

vx + vy( ) =∇ −
k
nµ

∂Ph
∂x

−
∂Ph
∂y

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟  (10) 

vx + vy( ) = − k
nµ

∂2Ph
∂x2

−
∂2Ph
∂y2

⎛

⎝
⎜

⎞

⎠
⎟  (11) 

 
According to the second assumption that the velocity 
gradient of the mass are respectively limited to zero 
(incompressible and irrotational), so the vx and vy are 
zero. By respecting to the Hydaulic Conductivity K, 
The equation can be expressed as follow 
 

−K ∂2Ph
∂x2

−
∂2Ph
∂y2

⎛

⎝
⎜

⎞

⎠
⎟= 0  (12) 

 
The vx + vy is the flow rate R of the well which have 
the constant and independent value. This is allow us 
to set the system as it correspond to the third 
assumption. 
 

−K ∂2Ph
∂x2

−
∂2Ph
∂y2

⎛

⎝
⎜

⎞

⎠
⎟= R  (13) 

 
Finally, we get the two equation (12) and (13) of the 
system that represents the fluid flow in the reservoir. 
 
Finite Difference Approach 

The FN method is used to solve the equation 
by discretization the partial differential equation into 
a square block with a specific interval. (Desai, 1972). 
First, we discretize the differencial equation of the 
system using central difference method. 

 
∂2P
∂x2

=
Pi+1, j − 2P1, j + 2Pi−1, j

Δx2
 (14) 

 
∂2P
∂y2

=
Pi, j+1 − 2P1, j + 2P1, j−1

Δy2
 (15) 

 
By substituting equations (14) and (15) to equations 
(12) and (13), then 
 

−K
Pi+1, j − 2P1, j + 2Pi−1, j

Δx2
−
Pi, j+1 − 2P1, j + 2P1, j−1

Δy2
⎛

⎝
⎜

⎞

⎠
⎟= 0  (16) 

 
We defined the ∆x=∆y=1, then the equation (12) 
become 
 

P1, j =
Pi+1, j + 2Pi−1, j +Pi, j+1 + 2P1, j−1

4
 (17) 

 
and for the equation (13) 
 

P1, j =
Pi+1, j + 2Pi−1, j +Pi, j+1 + 2P1, j−1

4
+
R
4K

 (18) 

 
where R is 
 

R = ρ vx − vy( ) = ρ ∂v
∂x
−
∂v
∂y

⎛

⎝
⎜

⎞

⎠
⎟  (19) 

 
For the larger system (in kilometer ), it is 

inefficient to solve the laplace equation by 
constructing the tri-diagonal matrix. There is another 
way to solve the laplacian equation using FD method 
with Gauss-seidel. 

As we can see in equation (17) or (18), it 
constructs  a diagonal matrix dominantly. A 
repetition of this approximation will converge to the 
true solution. By evaluating the equations with the 
Liebman’method we may get 

 
Pi, j
new = Pi, j

∗ + 1−λ( )Pi, jold  (20) 
 
Where λ is a relaxation parameter with a 

value between 1-2, and 𝑃%,'()*  is the initial value of 
pressure (previous iteration) and  𝑃%,'∗  is the 
recalculated value of the initial. Therefore we can 
measure the actual pressure. (Keffer, D,1999) 
 This process is cycled through for each node 
at which the solution unknown and then repeated 
until the solution profile no longer changes 
(convergence)  Or until the error is relatively small. 
 

error =
Pi, j
new −Pi, j

old( )
2

j=2

ny∑i=2

nz∑
nx −1( ) ny −1( )

 (21) 

 
We used λ=1,5 and  the iterative solution 

procedure when the error is less than 10-4 in 
maximum 400 iteration. 
 
Model Construction 
 The first approach, commonly known as 
geometrical reservoir characterization, focuses on 
static data (porosity and permeability) . This 
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approach uses the spatial correlation of static data to 
predict the unknown parameters at unsampled 
locations (Initial value of Pressure). In the second 
approach, subsurface properties are estimated 
through an inverse modeling procedure 
(Liebman’method), which matches the actual 
dynamic data (Hydraulic Pressure, Ph). 
 

 
 
Fig. 2.  The Reservoir Model 
 

The Dirichlet Boundary Condition (BC) had 
been appliaed for the 4 side reservoir wall. We 
assumed that the pressure for the 4 BC is constant. It 
means that there is no flow of mass along the wall of 
reservoir and cause the pressure remains constant. 

 
 

 
Fig. 3.  The Boundary Conditions 
 
We set the physical properties as it is shown in Table 
1 
 
Table 1.  Physical Parameters 
 

Physical Properties measured 

Intrinsic Permeability (k) 10-10 (m2) 

Dynamic Viscosity (µ) 10-4  (kg/ms) 
Porosity (n) 10% 

Hydraulic Conductivity (K) 10-4 
Gravity constant (g) 9.8 m/s2 

(x,y) (1,1) km 

RESULTS AND DISCUSSION 
 

First, we draw the pressure distribution in 
reservoir without attached well. The result is showed 
by figure 4. 

 

  
 
Fig. 4.  Pressure Distribution in Reservoir 
 

Where there is no well attached in the 
reservoir, therefore the fluid flow within it becomes 
slow and be considered as steady-state fluid flow. It 
caused the distribution of dimensional velocity is 
zero too. As we discussed before, we assumed that 
the reservoir is incompressible and irrotational. The 
only source are the four side of BC which are have a 
constant value. They describe that the wall of the 
reservoir are isolated from the outer side around the 
system and causing the reservoir becomes saturated. 

 
Reservoir with single well attached 
 A single well with a flow rate 15 kg/m3s was 
used in the first numerical experiment. The 
coordinate of the well is at (x,y) = (0.2 , 0.4 ) km. 
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Fig. 5.  Pressure Distribution with single well injected at 
(0.2,0.4) km 
 

What can be inferred from the results is  
when we attached a well with a small fluid rate 
(slow) the pressure around the well are no longer 
incompressible but varied and compressible. It 
means that the velocity changes  around the well 
cause the gradient of the pressure decrease and 
become negative. In this case, it indicates that before 
any steady state condition was achieved, the wells 
went dry.(lee et al., 1986). 
 
Reservoir with double/triple well attached 
 For further understanding, we simulate the 
reservoir with more than one  well attached. Here is 
the table containing the coordinate and the flow rate 
of each wells 
 
Table 2.  Double Wells 
 

Well Coordinate (x,y) (km) Flow rate kg/m3s 

Well 1 (0.2 , 0.5) km 8 
Well 2 (0.8 , 0.5) km 9 

 
 

 
 
Fig. 6.  Pressure Distribution with double well injected 
 
 

 
The two well has same K value but different 

value in flow rate (R) . The surf plot shows us that 
the gradient of the pressure keep decreasing as well, 
since the slope are negative. The value of R is 
responsible in speed of pressure decreasing. The well 
with less R has slower rate of pressure decreasing. 
 
Table 3.  Triple Wells 
 

Well Coordinate (x,y) (km) Flow rate kg/m3s 

Well 1 (0.2 , 0.4) km 8 
Well 2 (0.8 , 0.2) km 8 
Well 3 (0.6 , 0.8) km 9 

 

 
 
Fig. 7.  Pressure Distribution with triple well injected 
 
 In triple well, it is similar with the single and 
double well. The pressure distribution near the well 
are relatively decrease caused by an incompressible 
velocity distribution around the well. The higher 
pressure constant cause the well have more sufficient 
energy to pump up the oil (well 2) While the others 
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have lower pressure constant causing the rate of the 
gradient decreasing become narrow. 
 We have been simulated the Hydraulic 
Pressure distribution in saturated reservoir with well 
attached using the Darcy’s equation for 2-D steady 
state flow. There are many assumption which have 
been applied to the model such as incompressible 
and irrotational in order to simplify the model. In real 
application, actually in oil reservoir problems, the 
soils are usually not fully saturated, and the hydraulic 
conductivity can be highly nonlinear and can vary 
with space according to the soil types. Often the soils 
are very heterogeneous, and the soil properties are 
unknown. The model could be more complex with 
irregular shape in 3-D system. However, our 
simulation has enough assumption to rule out many 
real application in reservoir engineering. 
 This simulation can be widely used for many 
reservoir engineering problem, e.g Geothermic 
reservoir that installed with double wells (injection 
well and production well). The difference of this 
model on comparison with previous model is the 
flow direction. The  production and the injection well 
has an opposite flow vector. We can simply change 
the vector sign in the flow rate, and we may see the 
simulation rsults. However, there must be other 
treatments since the Geotermic reservoir require two 
phase fluid flow modeling (steam and liquid) and the 
Heat transfer phenomenon. 
 
CONCLUSION 
 

The Darcy’s law is highly useful in 
describing the fluid flow in porous media. We have 
been simulated the Darcy’s equation for the saturated 
reservoir model. We combined the Darcy’s equation 
and the mass balance in two-state. First: 
incompressible in reservoir, second compressible 
within the well. In saturated reservoir, the velocity is 
respectively zero and no outer pressure flow. When 
the oil are near the well, the pressure gradient are 
relatively decrease and distribute with slow fluid 
flow. The different flow rate is responsible in setting 
the speed of gradient changes. The lower flow rate 
has slower speed of pressure gradient. 

 
 
 
 
 
 
 

ACKNOWLEDGMENT 
We  thank to Department of Physics 

Faculty of Mathematic and Natural science, ITB 
for supporting our work. 

 
 
REFERENCES 
 
[1] Anderson, D.A., Tannehill, J.C. and Pletcher, 

R.H., Computational Fluid Mechanics and Heat 
Transfer, Hemisphere Publishing Corporation, 
1984 

[2] D. Keffer.Numerical methods for the Solution of 
Eliptic Partial Differential Equations. University 
of Tennesse. Knoxville. 1999 

[3] Desai, C.S., and Abel, J. F., Introduction to the 
finite element method, van Nostrand Reihold, 
New York, 1972. 

[4] Ewing R.E., Pilant M.S., Wade J.G., and Watson 
A.T.,Parameter Estimation in Petroleum and 
Groundwater Modeling, Department of 
Mathematics and Institute. 1994 

[5] H. Darcy. Les Fontaines Publiques de la Ville de 
Dijon, Dalmont, Paris. 1856 

[6] Hans Petter L., Kent-Andre M.Numerical 
methods for incompressible Viscous Flow. Dept. 
of Scientific Computing. University of 
Oslo.Oslo.2011 

[7] Jorg, E. Aarnes. An Introduction to the Numerics 
of Flow in Porous Media using Matlab. Dept. of 
Apllied Mathematics. Oslo for Scientific 
Computation, Texas A&M University. 2007 

[8] Lee, T., Kavaris, C., and Seinfeld, J. H., History-
Matching by Spline Approximation and 
Regularization in Single-Phase Areal Reservoirs, 
SPE Reservoir Engineering Journal, Sept. 521-
543. 1986 

[9] Singarimbun, A et al. , Simulation of Production 
and Injection Process in Geothermal Reservoir 
Using Finite Difference Method, WSEAS and 
Transactions on Heat and Mass 
Transfer.Bandung.2012 

[10] Thamir, A. Hafedh et al.. Fluid Flow In 2-D 
Petroleum Reservoir Using Darcy's 
Equation.no.2 vol.2.yogyakarta. 2004 

 
 
 
 

 


