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Abstract 
Assuming that the weak-isospin, particle-type (quark or lepton), color, and generation are internal quantum 
numbers, we may generate those quantum numbers by cloning the Dirac operator in four flat extra 
dimensions and trapping fermions in a harmonic-oscillator potential in the extra dimensions. Particle 
identification is obtained from the group representation multiplets associated with the choice of the trapping 
potential in the extra dimensions. The proposed model predicts the existence of unknown particles that might 
be considered as dark matter candidates. The interaction of the particles and the electro-weak bosonic fields 
which are treated as external fields will be discussed. 

Keywords: Dirac, flat extra dimension, quark, lepton, harmonic-oscillator. 

Abstrak 
Dengan mengasumsikan bahwa weak-isospin, jenis partikel (quark atau lepton), color, dan generasi adalah 
bilangan-bilangan kuantum internal, kita dapat memperoleh bilangan-bilangan kuantum tersebut dengan 
menggandakan operator Dirac dalam ruang datar ekstra (tambahan) berdimensi empat dan dengan 
memerangkap fermion dalam suatu potensial getaran harmonik dalam dimensi ekstra. Identifikasi partikel 
diperoleh melalui multiplet-multiplet representasi grup yang berkaitan dengan pilihan potensial 
pemerangkap dalam ruang dimensi ekstra. Model yang diajukan meramalkan adanya partikel-partikel tak 
dikenal yang mungkin dapat dipandang sebagai kandidat materi gelap (dark matter). Interaksi partikel-
partikel dengan medan boson electro-weak yang diperlakukan sebagai medan eksternal akan didiskusikan. 

Kata kunci: Dirac, dimensi ekstra yang datar, quark, lepton, getaran harmonik. 
 

1. Introduction 
Experimental data show that each quark 

comes in three different colors, while each lepton 
is colorless or a singlet in terms of color. Both 
quarks and leptons can be grouped in several 
families or generations. The current full width ΓZ 
data1,2) show that it is most likely that there are 
only three generations for either quarks or 
leptons. Moreover, both quarks and leptons have 
weak isospin. We will consider these, the weak 
isospin, the particle-type (quark or lepton), the 
color, and the generation as internal quantum 
numbers.   

Since there are strong similarities in the 
electroweak interaction properties from one 
generation to the others, we will for the most part 
consider only the first generation of quarks and 
leptons. This model is proposed as a phenomeno-
logical approach for a relatively low range of 
energy (below 100 TeV) that allow us to ignore 
the gravitational interaction. By introducing an 
effective potential in four extra-dimensions that 
takes the form of harmonic oscillator we will 

show that we may obtain the internal quantum 
numbers. 

2. Constructing the Field Equation 
Assuming that quarks and leptons are 

really elementary (non-composite) particles, we 
suspect that the internal quantum numbers such as 
weak isospin, particle-type (lepton or quark), 
color, and generation might result from the 
existence of extra dimensions beyond the ordinary 
Minkows-ky space-time M4.  

First of all we want to generate weak-
isospin. Following the work of Bryan3), we notice 
the close resemblance between weak isospin and 
ordinary or ‘mechanical’ spin. Since the latter is 
generated by the Dirac operator

  

acting in ordinary space-time 

M

∑
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μ
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3

0
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4

4, we try to clone the Dirac operator to act in the 
extra dimensions, taken to be Euclidean ~R , to 
yield  
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to generate weak-isospin. 
Indeed, the solutions of Eq. (1) exhibit 

weak-isospin, but with four components – twice 
as needed. Moreover, we face another problem 
here, since these solutions are describing a 
particle that has freedom to move in unlimited 
distance in the extra dimensions. To avoid this we 
opt to trap the particle in a potential in the flat 
extra dimensions. We conjecture that a particular 
potential might exist which will generate the rest 
of the internal quantum numbers too. 

Neglecting weak-isospin for the moment, 
we see that the rest of the internal quantum 
numbers of fermions can result from the 

 symmetry, where corresponds 
to particle-type and color, and U(1) corresponds to 
generation number. Thus we need to choose a 
trapping potential whose bound state solutions 
correspond to certain multiplets of 

)1()3( USU ⊗ )3(SU

)1()3( USU ⊗  
symmetry. 

We recall that solutions of a three-
dimensional harmonic-oscillator (HO) potential in 
the Schrodinger equation can be representations 
of an SU(3) symmetry3). We suspect that a four-
dimensional HO potential in the Dirac equation in 
the extra dimensions will give an 

symmetry which can be decomposed into 
the proposed symmetry. 

)4(SU
)1()3( USU ⊗

Following the outline above, we can now 
start constructing the most ‘primitive’ field 
equation by introducing a HO potential and 
cloning the Dirac operator in the extra dimensions 
to yield the extended Dirac equation: 
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where α~  is an arbitrary constant,  and μγ μγ
~~  are 

the Dirac matrices in M4 and 4~R , respectively, 
satisfying anti-commutation relations 

;4,3,2,1~,~2}~,~{

3,2,1,0,2},{
~~~~

==

==

υμδγγ

υμγγ
υμυμ

μυυμ g  (3) 

with 
).1,1,1,1(diagand)1,1,1,1(diag

~~
=−−−= υμμυ δg

If the solutions of Eq. (2) are written as the 
product of two functions  

,)~(~)()~,( ~~ xxxx αααα ψψ ⊗=,Φ  (4) 

then Eq. (2), written in Feynman notation, is 
separable into  

0)()M( =ψ+∇/− xi  (5) 

,0)~(~)M ~~~( 23 =ψ−α+∇/− xxi  (6) 

where M is the separation constant. 
If we identify M as the mass, then Eq. (5) 

is nothing else than the ordinary Dirac equation. 
But, unfortunately Eq. (6) does not look like the 
HO equation when reduced to two-component 
form (as we will show) and therefore is not likely 
to give SU(4) symmetry. The reason is that 
basically the Dirac equation has just SO(4) 
symmetry. However, we do not lose hope in 
obtaining SU(4) symmetry since we know that for 
the right potential, the Pauli reduction of Eq. (6) , 
like the Schrödinger equation, can exhibit such 
symmetry4). What we would need is some similar 
mechanism to act in 4~R  to suppress either the 
upper two components or the lower two 
components of the eigenfunctions. It can be 
shown that from the remaining components we 
may build eigenfuctions with SU(4) symmetry. 

From the application of the Dirac equation 
to the Hydrogen atom we learn that we can 
suppress the lower two components of the 
eigenfunctions to obtain the Pauli equation 
because of the γ0m0  term in the equation, 
provided that m0 >> <e2/r>. We note that the 
Coulomb potential is unchanged in the reduction. 

To imitate the role of γ0m0 in the hydrogen 
atom, i.e., to suppress either the lower two 
components or the upper two components of the 
eigenfunctions, we introduce in our primitive 
field equation a phenomenological term , 
where  plays the role of γ

0
5~ Mγ

5~γ
0, and M0 is very much 

larger than the effective potential. This will 
modify our field equation to 

{ } ,0)~,()~1(~~)1~1()~1()1~( 0
523 =Φ⊗+⊗+∇/⊗−⊗∇/− xxMxii γα

 (7) 
which is separable into   

0)() ( =ψ+∇/− xMi  and (8) 

).~(~)~(~)~~~~( 0
523 xMxMxi ψ=ψγ+α+∇/−  (9) 

Using a chiral representation of Dirac 
matrices in the extra dimensions, defining 
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we can rewrite Eq. (9) as two coupled equations 
0~~~) ~~( 0

23 =χ+φ−+α DMMx  and (12) 
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Assuming that M ≈ M0 >> , from 
Eq. (12) we obtain  
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which implies |~||~| φχ <<   for  0
~ M<<α . This 

means that we have succeeded in suppressing the 
lower two components of the extra-dimensional 
eigenfunctions. Substituting Eq. (14) to Eq. (12), 
and using the identity  
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we get the ‘Pauli reduction’ form of Eq. (9) which 
to a good approximation has only two-upper-
component solutions: 
{ } .0~)(2~~2~

00
23

0 =φ−+α−Δ MMMxM (16) 

Note, as anticipated, that the HO 
characteristic of the potential is unchanged. We 
recognize Eq. (16) as a HO equation in four 
dimensions with a mass spectrum formula 
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where  is the ‘total quantum number’ analogous 
to the ‘n’ in the energy spectrum formula derived 
from a HO potential in the Schrödinger equation. 

N~

Since we are interested in (nearly) 
massless fermions, wheras M0 in Eq. (17) is very 
large, we subtract M0 from the potential to 
eliminate the first term of the mass formula. The 
modified field equation is 
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which is still separable into 
0)() ( ~ =ψ+∇/− xMi N

 and (19) 
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where  is the new separation constant. 
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where φ~ satisfies the HO equation 
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Eq. (22) has a nearly massless mass formula 
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Let us first ignore the spin characteristic of 
φ~ in Eq. (22). The space part of φ~  has four-
dimensional HO solutions. We will denote these 
functions as Φ~  which have the explicit form 

∏
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where μ~
~n   = 0, 1, 2, …, , and 

the are Hermite polynomials of degree 
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Defining creation and annihilation 
operators in the extra dimensions, respectively, as 

)~
~~~(

2
1~

)~
~~~(

2
1~

~

1~~

~

1~~

μ

−
μμ

μ

−
μ

+
μ

∂
∂

β+β=

∂
∂

β−β=

x
xa

x
xa

 (25) 

and using the }~{ ~
~

μnΦ  as basis functions we can 
show that the creation and annihilation operators 
satisfy the commutation relations 
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which is the algebra of the generators of U(4).
 

Thus }~{ ~
~

μnΦ are basis functions for U(4) 
symmetry.

 
Furthermore, defining traceless operators 
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we can show that they satisfy the commutation 
relations 
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Therefore the νμ ~~
~A form an invariant subalgebra 

of  U(4), namely, SU(4). Thus the } are also 
basis functions for an SU(4) symmetry. 

~{ ~

~
μ
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Taking the spin part of φ~  into account and 
denoting it as m~

~ξ , we can write the explicit extra 
dimensional part of the solution of Eq. (20) as 
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We will assign the solutions of this form to the 
doublets of SU(2). The positive sign in Eq. (29) is 
associated with the positive helicity or the right-
handed nature of the solution. 
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For convenience we will take m~
~ξ  to be the 

eigenvectors of a spin operator 3
2
13~ σ≡S . Then 
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3. Particle Identification  
We can now interpret the previous results. 

By introducing  term into our field equation, 

in the limit 

0
5~ Mγ

0
~

0
→

M
α , we manage to suppress the 

lower two components of eigenfunctions in the 
extra dimensions. The remaining components 
consists of a two-component spinor and a four 
extra dimensional HO soulutions.  The first part is 
responsible for generating the weak isospin, while 
the second is responsible for generating the rest of 
the internal quantum numbers. 

It has been shown that four-dimensional 
HO solutions can serve as basis functions for an 
SU(4)-symmetry group. Furthermore, we can 
decompose this group into  by factor-

ing 

)1()3( USU ⊗

4
~~
nΦ  out of the }~{ ~

~
μnΦ .  

We should notice here that since the extra 
dimensions are real, the four-dimensional HO 
equation acting in this space only generate the 
tetrahedral representation of SU(4) with lowest 
irreps 1( 0~ =N ), 4 ( 1~ =N ), 10( 2~ =N ), and so on. 
The SU(3) representations decomposed from this 
group will only be the 1(n = 0), 3(n = 1), 6(n = 2) 
and  so on. 

The weight-diagrams of the lowest lying 
 multiplets satisfying Eq. (20), 

plotted vs. quantum number N

)4()2( SUSU ⊗
~  and weak isospin 

quantum number sm~~  are shown in Fig. 1. 

Figure 1 The lowest  multiplets. )4()2( SUSU ⊗

Some particle assignments are indicated. In these 
diagrams we assume that symmetry breaking has 
taken place. These diagrams are oriented so that 

4
~n -axis points downward for 2

1~~ +=sm  multiplets 

and upward for 
2
1~~ −=sm  multiplets, to anticipate 

the correspondence with the particle masses. 
We now come to the particle’s 

identification. First we take the quantum numbers 
generated from SU(3). The singlets of SU(3) would 
appear to be leptons because no further 
specification is needed if the weak-isospin and 
generation numbers are given. The triplets of 
SU(3) would appear to be  quarks, since quarks 
come in three colors. The SU(3) sextets and higher 
apparently represent other kinds of fermions we 
have not seen. We take the quantum number 4

~n  
associated with U(1) symmetry to represent the 
generation quantum number, with ,2,1,0~ =n   
corresponding to the first, second, third, … 
generation. Lastly, we take the quantum number 

sm~~  associated with SU(2) to represent the weak- 
isospin of the particle. Thus, the complete set of 
quantum numbers for particle identification is 
given by )~,~,~,~,~( ~4321 smnnnn  

 With the identification given above, a set 
of quantum numbers (0,0,0,0,–½), for example, 
corresponds to the first generation of leptons with 
weak-isospin – ½ , i.e., the electron. The red up-
quark, for example, can be described by the set of 
quantum numbers (1,0,0,0,½). These particle 
identifications for the three lowest irreps are listed 
in Table 1. 

What we have done so far, however, has 
not included chirality. The weak-isospins 
obtained from Eq. (20) couple with both left-
chiral and right-chiral solutions of the ordinary 
Dirac equation. Since the left-handed and right-
handed fermions behave differently in the 
electroweak interaction, we need to include 
chirality in our model, i.e., link the left-chiral 
solutions of the ordinary Dirac equation with 
isospin doublet solutions of the extra dimensions, 
and the right-chiral solutions of the ordinary 
Dirac equation with isospin singlet solutions of 
the extra dimensions. In our model, however, we 
can not give singlet assignments to right-chiral 
fermions, i.e., our fermions always come out as 
doublets. 

Note, however, that our weak-isospins are 
four-component spinors, and we have just used 
the upper two components. If we can find a way 
to utilize the lower two components, then we will 
have two independent sets of weak-isospin. 
Moreover, if they couple with the right-handed 
and left-handed weak bosons in a correct way, 
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then perhaps we can reproduce the left-right 
symmetric version of the electroweak interaction 
proposed by Pati, Salam, and Mohapatra5-7) prior 
to symmetry breaking. 

Similar approach but with opposite sign of 
the term in Eq. (18) will give us solutions 
that correspond to the negative helicity 

0
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Now we have two independent sets of 
weak isospins. We propose the solutions of the 
form given in Eq. (29) to couple only with the 
right-handed bosonic fields and the solutions of 
the form given in Eq. (31) to couple only with the 
left-handed bosonic fields. Thus we may assign 

 to the doublets of SU(2))~(~ )( x+ψ R, i.e., they 
represent the right-handed solutions of the extra 
dimensions, and we may assign )  to the 
doublets of SU(2)

~(~ )( x−ψ

L, i.e., they represent the left- 
handed solutions of the extra dimensions. 

Table 1: Particle Identification 
 

N~  Quntum number Particle 
0 (0,0,0,0, +½)  νe
 (0,0,0,0, −½) E 
1 (0,0,0,1, +½) νμ
 (0,0,0,1, −½) μ 
 (1,0,0,0, +½) ured
 (1,0,0,0, −½) dred
 (0,1,0,0, +½) uyel
 (0,1,0,0, −½) dyel
 (0,0,1,0, +½) ublu
 (0,0,1,0, −½) dblu
2 (0,0,0,2, +½) ντ
 (0,0,0,2, −½) τ 
 (1,0,0,1, +½) cred
 (1,0,0,1, −½) sred
 (0,1,0,1, +½) cyel
 (0,1,0,1, −½) syel
 (0,0,1,1, +½) cblu
 (0,0,1,1, −½) sblu
 (2,0,0,0, +½) “6” 
 (2,0,0,0, −½) “6” 
 (0,2,0,0, +½) “6” 
 (0,2,0,0, −½) “6” 
 (0,0,2,0, +½) “6” 
 (0,0,2,0, −½) “6” 
 (1,1,0,0, +½) “6” 
 (1,1,0,0, −½) “6” 
 (1,0,1,0, +½) “6” 
 (1,0,1,0, −½) “6” 
 (0,1,1,0, +½) “6” 
 (0,1,1,0, −½) “6” 

… … … 
The fact that in the limit p → E, the 

solutions of ordinary Dirac equation, ψ(+) and 
ψ(−), are the eigenfunctions of γ5 operator with 
eigenvalues +1 and −1. The fact that the only 
difference in the field equation corresponding to 
the right-handed and left-handed solutions of the 
extra dimensions is the sign of the term in 
Eq. (18) suggests that multiplying that term by γ

0
5~ Mγ

5 
might result in a desirable relationship between 
the ordinary- and extra-dimensional solutions. 
Thus, to account for the chirality into our model, 
we propose the field equation 

{
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It can be shown that the general solutions 
of Eq. (32) in the limit p → E can be written as 
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xxc
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which links the left-handed solutions of the 
ordinary Dirac equation only to the left-handed-
like solutions from the extra dimensions and the 
right-handed solutions of the ordinary Dirac 
equation only to the right-handed-like solutions 
from the extra dimensions. Fortunately this is 
consistent with the left and right symmetry as 
described by Pati, Salam, and Mohapatra model. 
Thus, after accommodating chirality into our 
model we may assign fermions to certain  
multiplets of  where 
the  corresponds to the left and 
right weak-isospin, the SU(3) corresponds to 
particle-type and color, and the U(1) corresponds 
to generation number. 
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RL SUSU )2()2( ⊗

However, we still need one final step to 
modify our field equation. We notice that the four 

1~⊗μγ  matrices commute with the four  
matrices, whereas we would expect all of the 
gamma-matrices of a true Dirac particle to 
anticommute. To satisfy this requirement we 
multiply Eq. (32) on the left by to yield a 
new field equation where all gamma-matrices do 
anticommute; i.e., 
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The gamma matrices given in Eq. (35) satisfy the 
usual anticommutation relations, i.e., 

,7,...,1,0,2 ==ΓΓ+ΓΓ vuguvuvvu  (38) 

where guv = diag (1,−1, …, −1). 

4. Discussion 
Since the Dirac fields or particles exist in 

eight dimensions, we assume that the bosonic 
fields also live in eight dimensions. Here we will 
deal only with the electroweak bosonic fields. 

The electroweak bosonic fields in ordinary 
space are vector fields. To generalize the electro-
weak fields in eight dimensions we assume that 
the electroweak bosonic fields consists of vector-
isovector weak-bosonic fields and a vector-
isoscalar electromagnetic field.  

Since the fermionic fields in our model 
have left-right symmetry, we assume that after the 
spontaneous symmetry breaking the electroweak 
bosons consist of RLRL ZZWW ,,, ±±  and γ (photon). 
Prior to spontaneous symmetry breaking we will 
assume that these fields have the form 
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Demanding that the left-handed fermions 
interact only with left-handed weak bosons, and 
similarly that the right-handed fermions interact 
only with the right-handed weak bosons, while 
the singlet B boson can interact with either the 
left-handed or right-handed fermions, we propose 
that the interaction can be described as 
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where  
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with j~τ  the 2 × 2 Pauli matrices acting only on the 
extra-dimensional space, and 
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Assuming that the bosonic fields extend 
much farther in the extra dimensions than the 
fermionic fields do, and using the orthogonal 
property and completeness of the basis functions 
we may construct the Lagrangian of  the interact-
ion4)  
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where Ψ stands for any doublet of fermion fields. 
Eq. (43) holds for any isospin pair of quarks, and 
any isospin pair of leptons, for any generation. 
Note that it does not mix quarks with leptons nor 
particle of one generation with those of another 
generation. 

We note that the Lagrangian derived from 
our model is different in structure with that of the 
standard model. In this model, both left-handed 
and right-handed fermions form isospin doublets, 
while in the standard model only left-handed 
fermions form isospin doublets; the right-handed 
fermions always appear in singlets. While the 
bosonic fields in the standard model comes auto-
matically from the gauge symmetry, in this model 
the bosonic fields are taken to be external fields. 
This results in the disappearing of the kinetic 
energy terms of the bosonic fields in the 
Lagrangian. 

Ignoring the Cabibbo-Kobayashi-Maskawa 
mixing, it can be shown that in interacting with 
weak bosons, the initial fermion may not change 
generation number, particle type (e.g., from lepton 
to quark or vice versa), color, nor weak isospin. 
Furthermore, transmuting a left-handed fermion 
to a right-handed fermion, and vice versa, are 
prevented. 

5. Conclusion 
An alternative model for quarks and 

leptons has been proposed by assuming that all 
particles live in eight-dimensional space-time. 
The extra four dimensions are assumed to be flat, 
and most of all particles are trapped in a HO-like 
potential in the extra dimensions. The spectrum of 
the solutions to the proposed field equation results 
in the internal quantum numbers that correspond 
to the weak-isospin, generation, color, and 
particle-type (quark or lepton). The solution 
predicts the existence of unknown particles that 
might be associated with the dark matters in the 
universe. The interaction of the particle with the 
bosonic (electroweak) fields, treated as external 
fields, results in the conservation of generation 
number, particle-type, color, weak-isospin and 
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also chirality. The mass formula, however, is 
inconsistent with experimental data.  
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