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Abstract 
Response of  linear or complex nonlinear structures takes form in a characteristic functions and in the deterministic or 
stochastic external loads. Non linear model with non linear structure stiffness is a type of  Duffing equation. Stochastic 
external loads system is referred to a random signal white noise with a constant power spectral density (So), while non 
linear system identification of deterministic system's is based on time history, phase plane and Poincare map. Methods of 
Galerkin and Runge-Kutta are used to solve the partial non linear governing diferential equations.  Mean value , Standard 
deviation and Probability Density Function (PDF) is stated as statistical responses due to stochastic response of random 
variables. The analysis of random vibration in the solution of non linear stochastic differential equation  is solved 
numerically by Monte Carlo simulation and analitically by Fokker-Planck-Kolmogorov  (FPK) equation.  
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INTRODUCTION∗ 
 

Winds, waves and seismic forces are 
commonly a stochastic loads system on the 
engineering structures. Therefore, a random 
vibration analysis is essential to understand 
behaviour of structures. One may find the 
fundamental theory of random vibration theory in [1 
– 9]. In general, solution of random vibration is by 
numerical approach to nonlinear response system 
calculation of standard deviation and the probability 
density function (PDF). The analytical solution 
limited to a special case. Solution method in general 
to the vibration system of linear and nonlinear 
random vibration by [2,4, 5, 7–9], 1). Fokker- 
Planck-Kolmogorov (FPK) method, 2). Statistic 
Linearization method, 3). Gaussian closure and 4). 
Monte Carlo simulation. 

This paper discusses simply supported beam 
subjected to a concentration vertical load P(x,t) of 
stochastic type and horizontal load Nx of  
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deterministic type. Nonlinear partial differential 
equations of beam takes form of equation (1), of 
which by the Galerkin method is reduced to  
nonlinear ordinary differential equation (5,7). 
Equation (7) is solved by Runge - Kutta method. 
Displacements due to deterministic and stochastic 
loading systems are the structure response. 

 
 

VIBRATION NON- LINEAR DIFFERENTIAL 
EQUATION 

 
        Beam vibration non-linear differential equation 
undergoes large deflection with nonlinear geometry 
due to stretching and axial forces is expressed in 
equation (1) 
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Fig. 1. Simply Supported Beam 
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The partial differential equation takes form of  [10, 
11, 13] : 
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     (1) 

ρA = beam mass, c = damping, EI = bending 
stiffness, N = axial force, P(x,t) = vertical load.  
Equation (1) describes relationship dynamic 
equilibrium between the internal forces and the 
external loads of the structure system. Terms 1, 2 
and 3 are linear components corresponding to Euler- 
Bernoulli's theory, and the terms 3 to 4 are nonlinear 
components due to stretching and axial force. 
Solution of equation (1) for the displacement w (x,t) 
assuming : 
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              (2) 

To Φn  is function of normal modes, qn(t) is modal 
coordinate. By the use of Galerkin procedure [10–
13] 
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Boundary conditions for hinge and roll supports: 
( ) ( )x 0,L '' x 0,L 0Φ = =Φ = =                       (4)

 One may find 
3
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Simplify equation (5,6) in the form of non–
dimensional 
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Equations (7,8) are solved by Runge - Kutta 
method. 
 
 
 

WHITE NOISE PROCESSES 
 

The stochastic load W (t) is modeled as in the 
form of white noise. Stationary Gaussian white 
noise process is defined as a process that has a 
uniform spectral density function of the intensity S0 
through the entire frequency area 

 
Fig. 2. White Noise process,  (a). Time History,  

(b). Power Spectral Density [3,8] 

 
 

FOKKER-PLANCK-KOLMOGOROV (FPK) 
EQUATION 
 

Equation of Fokker - Planck – Kolmogorov - 
FPK depicts the evolution of time and space of a 
probability density function (PDF) a stochastic 
dynamics of the system or be used to predict the 
properties of the response system [7–9,14–15]. The 
general form of Equation of Fokker - Planck – 
Kolmogorov  [8] 
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For P = probability, µi = drift , σ = diffusion. With 
external load of stochastic type white noise, the 
zero-mean and the spectral density So, then by 
equation (7) 

( )3
nq(t) 2 q(t) q(t) q (t) W t+ ζω −α +β =&& &       (10) 

Based on the equation (9,10), the form of the 
equation of the Fokker-Planck-Kolmogorov 
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For q1 = modal displacement, q2 = modal velocity 
( 1q& ). Completion equation (11) for the probability  
density function (PDF) modal displacement (q1) at 
steady state conditions. 
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The coefficient C can be obtained from the equation 
(12) for Pq = 1 then 
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Variance of modal displacement according the 
following equation : 

2 4n
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Response stochastic system can be obtained in the 
form of a standard deviation of modal displacement 

2
q qσ = σ       (15) 

 
 
MONTE CARLO SIMULATION 
 

According to the procedure of Monte Carlo 
simulation, the excitation force W(t) in equation 
(10) generated digitally and response system 
displacement q(t) calculated in accordance with the 
procedures of numerical finite difference method. 
Wk random variable excitation due to white noise 
and the variance associated with the intensity of the 
(Do) and the time interval Δt , which is in the form 
of discrete representation of white noise  [8] based 
on the Figure (2a) 

 
Fig. 3.  White Noise Discrete [8] 

 
The magnitude of the variance 
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Variabel Wk 
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For the Uk is the generation of random numbers, 
with application software MATLAB. 
 
 
RESPONSE DETERMINISTIC OF MODAL 
DISPLACEMENT 
 

For the case in the form of non-dimensional 
deterministic according to the equation (7,8), with 
the value of the damping factor ζ = 0.05 ; α = 0.5 ;  
β = 0.53 ; Ω = 0.16. 

 
Fig. 4. Time History Modal Displacement 

 
In the nonlinear system, for deterministic response 
seen with the case of a linear spring (β = 0) , hard 
spring (α = 0.50) and a soft spring (α = -0.50), 
based on the results of the analysis as shown Figure  
(4), displacement greater responsiveness on the 
system soft spring than the hard spring and also 
obtained in the soft spring, the system shows the 
response of chaotic, which with small changes in 
initial conditions q(0) = 0.00 becomes q(0) = 0.01, 
the response of modal displacement of the system 
there will be a large difference with increasing time 
( at t = 70 second begin to change). In the phase 
plane (Figure 5), for a soft spring system, the 
trajectory is never repetitive and non-stationary for a 
long time while in the hard spring system shows the 
trajectory stationary in the long term . 

 
Fig. 5. Phase Plane 

 
Symptoms chaotic on the soft spring system 

can also be identified by mapping the Poincare 
[10,13,16], which shows the track with a fractal 
pattern. 
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Fig. 6. Poincare Map, soft-spring, (α=-0.50) 

 
RESPONSE STOCHASTIC OF MODAL 
DISPLACEMENT 
 

For the case of stochastic according to the 
equation (8) and (10), with the value of the damping 
factor ζ = 0.05; β = 0.53 ; So spectral density = 1, 
variations in the value of α ( hard spring α = 1 ),  
soft spring ( α = -25.0). Based on the equation of the 
Fokker-Planck-Kolmogorov (FPK) according to 
equation (11), to the completion of steady state 
conditions according to equation (12,13,14). 
According to the equation (12) can be obtained 
probability density function ( PDF ) as shown figure 
(8) for linear spring, hard spring and soft spring.The 
standard deviation of the modal displacement can be 
obtained by equation (15). Standard deviation value 
for the linear spring (α=1 , β=0.00) qσ =5.605 units, 
nonlinear hard spring (α=1, β=0.53) qσ =2.174 
units, and nonlinear soft spring (α = -25, β = 0.53 ) 
qσ =  6.766 units (see figure 8) 

 
    Fig. 7. Probability Density Function (PDF) 

of Modal Displacement 
 

Based on Monte Carlo simulation according to the 
equation (7, 17 ) with 1000 simulation (NSIM) , and 
the time interval (Δt) 0.05 seconds, it takes about 
23.119 second computing (cputime). The simulation 
results at time t = 100 second, standard deviation of 
modal displacement qσ =  6.787 units. Monte Carlo 
simulations show an accurate result of the 
completion of the analytical methods of the Fokker-
Planck-Kolmogorov (FPK method) with an error 
rate ε = 0.31%.  

 
Fig. 8. Standard Deviations of Displacement  

(MC = Monte Carlo,  FPK = Fokker-Planck-Kolmogorov) 
 

CONCLUSION 
 

Displacement response of nonlinear structural 
system due to a combination of stretching and axial 
force in deterministically is soft spring with typical 
symptoms of type chaotic that is very sensitive to 
the initial conditions of the system. With a small 
change in the initial conditions, the system response 
will change with increasing time. Connection with 
the stochastic response obtained important thing is  
the amount of displacement standard deviation, 
where the soft spring which is useful in the design 
concept plan of the structure. 
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