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Abstract 
Fusion reaction simulation of two types of nucleon: proton and neutron, is reported in this paper. The interactions 
between these nucleons are assumed to be only the nuclear force and electrostatic. The modeling is done in a classical 
approach where molecules formed by the nucleons are being collided with each other. In the model, some parameters 
were configured to see how these parameters affect the simulation. Some interesting results is that we can find a stable 
Helium-5 and a neutron-neutron pair as the product of the collision which should not have been possible due to the the 
quark interactions inside them. This leads us to a conclusion that we need to add a force-model for quark interaction. We 
do this by using an electrostatic-like force. However using this model, we may end up to instability of the tritium. In this 
paper we also report a configuration where the neutron-pair is unstable while tritium is stable. 
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INTRODUCTION∗ 
 

Fusion reaction of deuterium with tritium 
producing helium-4 [1] is a very common reaction. A 
model of this reaction using fifth order Gear method 
has been reported and shows a wide variety of 
reaction product depending on the configuration of 
the model[2]. One of the product observed in the 
report is a neutron-pair which even though possible 
to create [3,4], but it is very uncommon and 
unstable[5]. 

A same reaction model with different method 
has been conducted and will be reported in this 
paper. The method used here is the velocity Verlet 
method. We then compare the new model with the 
previous model[2]. Then another simulations are 
performed to study the stability of the neutron pair 
and tritium in different configuration. 

 
SIMULATION 

 
 In the simulation, we used 4 different force 
model: nuclear binding force Bij, nuclear repulsion 
force Rij, electrostatic force Qij, and quark 
interaction force Sij. The nuclear binding force 
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represent the strong interaction, one of the 4 
fundamental interactions. Nuclear repulsion force is 
a representation of the fact that two nucleons cannot 
have a same position. Electrostatic force is used 
because we have protons. The quark interaction 
force is introduced to prevent the forming of 
neutron-pair. 

The first three force models are calculated 
with the sama equation as in previous model[2]: 
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rb is the cut-off distance for the strong interaction, 
ijr  is the scalar distance between particle i and j, and 

ijr̂  is the normalized displacement vector. 
Quark interaction basically is same as 

electrostatic interaction. An up-quark has a e3
2+  

charge, while a down-quark has e3
1− charge. Proton 

consists of 2 up-quark and 1 down-quark resulting 
to a +e net charge. Neutron consists of 2 down-
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quark and 1 up-quark resulting in a net charge of 0, 
but internally it is a configuration of these three 
quarks[6]. Quark structure for proton and neutron 
make it possible to have a several stability modes[7], 
We assume that this modes results in an averaged 
mode-constant ks therefore we can calculate the 
force from quark interaction with a similar equation 
with the electrostatic force. 
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We set s = -1 for neutron and 1 for proton. With 
these values, the interaction will add a repulsive 
force to the neutron-pair while a proton-neutron pair 
will still bind. Tritium binding however, cannot be 
predicted easily because it is practically a multibody 
system. 

The algorithm for velocity Verlet method is 
as follows: 
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xi, vi, and ai are position, velocity, and acceleration 
of particle i [8]. 

The initial configuration of the simulation is 
shown in figure 1. 

  
Fig. 1.  Initial configuration of the reaction model 

 
Furthermore, to test stability of neutron pair 

and tritium, a similar configuration is also set but 
changing the proton in deuterium into a neutron. In 
this configuration, the separation d is set far away 
such that the interaction between the two clusters 
are negligible.   

 
Fig. 2.  Initial configuration for neutron-pair repulsion test 

 
 

RESULTS AND DISCUSSION 
 

Model parameters are set to be same as a 
previous model[1] to compare the methods. The 
simulation result for velocity Verlet method is 
shown in figure 3. 

 
 

Fig. 3.  Particle trajectory. Parameter: m=0.1, q=0.1, d=1, b=1, 
kb=0.2, rb=0.2, kr=105,kq=0.01, θ1=π/4, qθ2=π/4, 
h=0.4 2 ,v= 2 . 

With the configuration shown in figure 3 
caption, the products in previous model are 2 
deuteriums and 1 neutron while in the velocity 
Verlet model no particle is binding with each other. 
This implies that for the velocity Verlet method, we 
may need a higher magnitude of binding force or the 
cut-off distance is too short. We further test the 
model by modifying the parameters. Another result 
is presented in figure 4. 
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Fig. 4.  Particle trajectory. Parameter: m=0.1, q=0.1, d=1, 
b=1, kb=0.1, rb=0.4 2 , kr=105, kq=0.01, θ1=π/4, 
θ2=π/4, h=0.2, v= 2 . 
 
Using the configuration presented in figure 4, the 
reaction product is now helium-4 which is actually 
the most common product in the reaction. However, 
when we apply this configuration without the quark 
interaction term to the neutron-pair repulsion test, 
the neutron-pair is stable.  

 
Fig 5. Left: stable neutron-pair, right: stable tritium. 
Parameter: m=0.1, q=0.1, d=1, b=1, kb=0.1, rb=0.4 2 , 
kr=105,kq=0.01, h=0.2, tmax=1, tΔ =10-6. 
 

Adding the quark interacton term, in some 
configuration, the neutron pair will become 
unstable. But, tritium stability cannot be ensured as 
can be seen in figure 6 and 7. 

 

Fig. 6.  Left: unstable neutron-pair, right: stable tritium m=0.1, 
q=0.1, d=3, b=1, kb=0.04, ks=0.14, rb=0.4 2 , kr=105,kq=0.01, 
h=0.2, tmax=1, tΔ =10-6 

 

Fig 7. Left: unstable neutron-pair, right: unstable tritium (the 
black nucleon escapes from binding). m=0.1, q=0.1, d=3, b=1, 
kb=0.02, ks=0.14, rb=0.4 2 , kr=105,kq=0.01, h=0.2, 
tmax=1, tΔ =10-6 

Neutron-pair and tritium stability depends on the 
value of ks and kb. Figure 8 shows a parameter space 
for the stability. 
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Fig. 8. Stability chart of neutron-pair and tritium in a ks and kb 
space. 
 
In figure 8, we can see that neutron-pair will be 
unstable when ks > kb. On the other hand, we cannot 
draw a conclusion yet for tritium stability. 
 
CONCLUSION 
 

The simulations shows that the neutron-pair 
is observed when using a velocity Verlet method. 
The binding of the neutron pair can be cut by adding 
a quark interaction term as a classical interaction on 
the model with a constraint ks > kb. In this situation, 
tritium binding may be affected and thus needs 
further investigation. 
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