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Abstract 
In this study, lattice-gas cellular automata were used to solve the flow of incompressible Newtonian-fluid in porous 
media microchannels. We discuss fluid flow between two stationary parallel plates. By applying a constant pressure 
gradient, volumetric flux was determined as a function of time until a steady condition is achieved. For steady laminar 
flow, its velocity profile is parabolic. For flow in porous media between two stationary parallel plates, the results show 
that medium permeability depends on porosity and obstacle configurations. For a single obstacle, the permeability is a 
parabolic function with respect to positions of an obstacle in the direction perpendicular to the flow. The permeability is 
smallest when the obstacle is at the central line along the flow. A maximum permeability may be achieved when the 
obstacles attached to the channel wall. Other obstacle structures give lower permeability, even zero permeability for 
dead end microchannels. 
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INTRODUCTION∗ 
 

       In the concepts of cellular automata, each 
automaton in its internal state will behave as a 
processor that receives inputs, processes the inputs, 
and determines the next internal state and its outputs 
[1]. Therefore the computation method based on 
artificial neural network [2] can also be included as 
cellular automata method. This method enables to 
give solution in many problems that are difficult to 
be worked out conventionally. 
       In general, a fluid molecule has a linear size in 
the order of nanometer. A molecule occupies one 
lattice site in triangular lattice in the Lattice Gas 
cellular automata. This study discusses fluid flows 
in channels having linear dimensions of 160x72 
lattice sites. We call micrometer-sized channels as 
microchannels.  
     Parallel plate flow is an object of extensive study 
because it is a simple model for flow through a 
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crack or joint of a rock [3, 4]. This flow is a 2-D 
channel flow since flow in the third dimension is 
invariant. Micrometer-sized media between two 
parallel plates are then selected as two-dimensional 
media microchannels. Obstacles in this media are 
used to simulate two-dimensional porous media 
microchannels. 
        Using lattice-gas cellular automata (LGA), we 
study fluid flow in micrometer-sized media between 
two stationary parallel plates caused by an applied 
pressure gradient. Volumetric flux is computed as a 
function of time until the flow achieves a steady 
state condition [3]. This paper reports the velocity 
profile of the flow at a steady state condition and 
also investigates the dependency of medium 
permeability on porosity and arrangement of 
obstacles.  

 
THEORITICAL BACKGROUND 
       For steady incompressible laminar flow in 
porous media, Henri Darcy discovered 
experimentally that the volumetric flux q  is 
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proportionally linear with the applied pressure 
gradient dxdP / as follows [3]. 
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where k  is permeability the medium and µ  is 
dynamic viscosity of the fluid. 
 
 

 
 

Figure 1. Two parallel plates at 0=y and Hy = . 
 
Analytical solution for steady incompressible 
laminar fluid flow between two stationary parallel 
plates has been known [5]. At a constant pressure 
gradient, velocity profile for laminar flow in Figure 
1 is a parabolic curve, i.e. 
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and the volumetric flux is proportional to the square 
of channel width:  
 

L
PHq Δ
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where u  is the velocity of the fluid in x -direction, 

)0()( =−==Δ xPLxPP  is pressure difference, H is 
channel width, and L  is the channel length. 
       The volumetric flux q at steady state is related 
with the velocity of the fluid in x -direction u  by 
porosity φ  of the medium as given in this equation 
[3] 

uq φ=                                  (4) 
 

where porosity φ  is defined as void regions divided 
by the total region. 
 
 
THE LATTICE-GAS CELLULAR 
AUTOMATA 
 

       LGA is introduced by Frisch, Hasslacher, and 
Pomeau in 1986 [6]. The automata are distributed 
on the nodes of a periodic triangular lattice. The 

automata change their states simultaneously by 
parallel iteration. The lattice-gas model is 
constructed of identical particles that move from 
node to node on a triangular lattice, colliding when 
they meet, and always obey the fundamental 
physical principles, i.e. conserving particle number 
and momentum. Particles of unit mass move with 
unit speed in the direction given by 
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Any particle that reaches a material point is 
reflected back with its negative velocity. This rule is 
used to fulfill the non-slip boundary conditions. The 
lattice in the model is infinite, but in practice always 
has edges. Therefore periodic boundary condition is 
applied so that the left end of the lattice for medium 
in Figure 1 is connected the right end. 

      The units for kinematics quantities are as 
follows. Length is in lattice units (l.u.), i.e. the 
distance between two nearest nodes. Time step (t.s.) 
is the discrete time unit required for the update of 
the entire automata. One mass unit (m.u.) is the 
mass of a single particle. Therefore, velocity is in 
lattice units per time step (l.u./t.s.) and volumetric 
flux has the same unit as velocity. Pressure is in 
(m.u.)×(l.u.)-1×(t.s.)-2. The permeability and the 
dynamic viscosity are in (l.u.)2 and          
(m.u.)×(l.u.)-1×(t.s.)-1 respectively. 

 
NUMERICAL TECHNIQUES 
 

Lattize size,  initial and boundary conditions 

      The lattice size for this 2-dimensional flow in 
Figure 1 is L  × H . There are xn  automata in x-
direction so that l.u.xnL =  and  yn  automata y-

direction so that l.u.2
3

ynH =  We use nx = 160 
and ny = 72 automata.  The previous studies in LGA 
show that mean free path in lattice gas is 
approximately about 5-8 automata [3,7].  In this 
study, the pores have sizes more then the mean free 
path.  

       The density is 2.4 particles per site. At initial 
condition 0=t , a number of input particles (2.4× xn
× yn ) are distributed in the lattice randomly both 
their positions and velocity directions. Particles that 
leave the lattice at Lx =  reenter the lattice at 0=x
and particles that leave at 0=x reenter at Lx = . This 
periodic boundary condition is often used to 
simulate a large system by modelling a small part 
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that is far from its edge. This condition also 
maintains constant particle number in the lattice. 
Any particle that reaches a material point is 
reflected back with its negative velocity. 

Pressure gradient 
       A pressure gradient was created by changing 
the x -component of momentum particles at 0=x
each time step during the experiment and no forces 
are applied at Lx =  [3]: 

 

HL
fn

L
xPLxP

L
P

dx
dP xy−=

=−=
=

Δ
=

)0()(       (6) 

 
where xy fn   is total change in the x -component of 
momentum from particles distributed in yn  
automata at 0=x  is the average change in the x -
component of momentum at a single point at 0=x . 
In this study,  we use 0069.0=xf  which is 
generated from total change of 0.5 in the x -
component of momentum each time step to give a 
pressure gradient of 5.012x10-5.  
 
Velocity profile 

        For a constant pressure gradient, the volumetric 
flux was plotted as a function of time until its value 
does not change significantly with time. When 
system has achieved its steady condition, velocity 
profile is then determined. Average x-component of 
velocity per particle is presented as a function of y. 
In order to obtain better data quality, we need to 
average the results from 10 runs with different 
randomness of particles in the initial condition. The 
data are reported in the averages ± their standard 
deviations. From the result of velocity profile, the 
viscosity of the fluid can be determined. 
 
The obstacle’s position-dependent medium 
permeability 
       Using a square obstacle in the medium, 
permeability of medium is calculated from equation 
(1) with input parameter is pressure gradient and 
output data is volumetric flux at steady state.  The 
position of the obstacle is varied along the y-
direction. The particles are grouped into 8x8 
automata to have one representative particle which 
is drawn as an arrow to give a description in 
macroscopic scale.  

The obstacles’s configuration-dependent medium 
permeability 

       The dependency of medium permeability on the 
porosity of medium is studied. The porosity of the 

medium is varied on the configurations of the 
obstacles. Therefore, this section aims to study the 
permeability of the medium on the obstacles’s 
configurations. 
 
RESULTS AND DISCUSSION 
Velocity Profile 
       In fluid mechanics, the velocity of viscous fluid 
at solid boundaries is zero and the flow is fastest at 
the center. Velocity profile for steady parallel-plate 
flow is shown in Figure 2. The velocity profile is 
parabolic. Using Equation (2) for the result of this 
velocity profile, we found that the viscosity of the 
fluid was 0.143. This result agrees for laminar flow. 
This parabolic velocity profile has also been 
reported by previous studies using greater values for 
pressure difference with 0.025=xf  [3] and 

0.0125=xf [8].  
 

 
 

Figure 2. Numerical result for u(y) compared to the 
theoretical parabolic profile(𝐿 = 16−,𝐻 = 72 3/

2  𝑎𝑛𝑑  𝑓! = 0.0069;   𝑅! = 0.998)   
 
The obstacle’s position-dependent medium 
permeability 
       Using this low pressure gradient, a laminar flow 
is obtained. Threfore, the Darcy equation (1) can be 
applied providing  the pore size is larger than mean 
free path in lattice gas. Figure 3 shows variations in 
position of a single obstacle along the channel 
width. This was made to observe its effect on 
permeability of medium. At the same porosity, it is 
found that permeability of medium is highest when 
the obstacle is located at the edge of the channel. In 
contrast, permeability of medium is lowest when the 
obstacle is in the middle of the channel as shown in 
Figure 4. 

       Figure 2 shows that the flow is fastest at the 
center.  Therefore, if an obstacle is placed in the 
center then this will impact most on the decrease in 
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volumetric flux. Conversely, if the obstacle is 
placed on the edge then this gives the smallest 
impact on the decline of the flux because the 
velocity in this area is small. Figure 4 shows that 
medium permeability for flow in x-direction is  a 
parabolic function with respect to the positions of an 
obstacle in y-direction. 

 

 
Figure 3. (a) - (e) Position of a square obstacle                

is varied in y -direction and (f) placed at x           
between L25.0 to L4.0 . 

 
 

 

 
 
Figure 4. Permeability of medium for flow in x-direction 

is related to the positions of an obstacle in y-direction. 
 
 
The obstacles’s configuration-dependent medium 
permeability 

       Figure 8 summarizes ratio of the permeability k 
of medium with respect to its maximum value k0 
versus porosity for 11 different shapes and 
arrangements of obstacles in a microchannel as 
illustrated in Figures 5-7. Figure 8 is similar to the 
data for conductivity coefficient of 23 rock samples 

if it is plotted with respect to porosity in the paper 
by Jan Šperl and Jiřina Trčková (2008) [9]. For two-
dimensional disordered porous medium, Reyes et al 
(1999) obtained a power-law dependence of 
permeability as a function of porosity [10]. It is 
identified from Figure 8 that there are 3 different 
clusters in grouping the relation between 
permeability and porosity.  
       First, permeability seems linearly related to 
porosity. This is appropriate for obstacle 
configurations shown in Figures 5c and 5d which 
have symmetry with respect to the central line along 
the flow and the obstacles are attached to the 
channel walls. Second, permeability varies at the 
same porosities. At this second group, the different 
configurations of the obstacles affect the flow. 
Among configurations with 82.0=φ (Figures 6c, 6d 
and Figure7), Figure 6c has the highest permeability 
since the obstacles are near to the channel walls 
where the flow is very slow. In contrast, 
permeability will be lower for porous medium with 
obstacles closer to the center of flow. Third, zero 
permeability for medium having total dead end as 
illustrated in Figure 6b. For this medium, flow rate 
is zero whatever the ratio of void to the total region.  
 
 

 
Figure 5. Some examples of obstacle configurations 

inside a microchannel:  
(a) 0.1=φ , (b) 96.0=φ , (c) 91.0=φ , and (d) 79.0=φ . 

 
 
       In general, Figure 8 presents that there is 
maximum permeability which may be achieved 
when the obstacles attached to the channel wall. For 
other obstacle configurations, permeability will be 
lesser and even zero. The qualitative results from 
LGA may explain the dependency of permeability 
on porosity and the configurations of obstacles in 
microchannels. 
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Figure 6. Some examples of obstacle configurations 

inside a microchannel: (a) 76.0=φ , (b) 85.0=φ , (c) 
82.0=φ , and (d) 82.0=φ . 

 

 
 

Figure 7. Some examples of obstacle configurations 
inside a microchannel at 82.0=φ  

 

 
Figure 8. Permeability of medium  k/ko versus porosity φ  

for several obstacle configurations as illustrated in 
Figures 5-7. 

 
 
CONCLUSION 
 

       By applying a constant pressure gradient, velocity 
profile is parabolic for steady laminar flow. This LGA 
results agree with the theory. Using this low constant 
pressure gradient, medium permeability depends on 
porosity and obstacle configurations. For a single 
obstacle, permeability is a parabolic function with respect 
to positions of the obstacle in direction perpendicular to 
the flow.  The permeability is smallest when the obstacle 
is at the center of the flow.  

       The permeability of the medium achieved its 
maximum when obstacles attached to the channel walls. 
Other structures give lower permeability, especially for 
medium having obstacle located at the center of the flow, 
and even zero permeability for dead end channels. 
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