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Abstract 

This paper will discuss about our study in filter design on discrete-time neutral system using 
guaranteed cost method. This design filter method yields a robust filter and the derivation of its 
equation can be obtained by using LMI (linear matrix inequalities). 
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INTRODUCTION∗ 
 

Uncertainty in a system shows impact on 
stability and performance of control system and 
signal processing. Therefore, how to design a robust 
filter that will guarantee adequate level of 
performance becomes main problem in many 
applications. Common problems that often met on 
designing a filter are disturbance, perturbation on 
the output because of uncertainty on the system [1]. 
Guaranteed cost method will be proposed to solve 
these problems [2-3]. 

LMI approachment had been used and had a big 
contribution in term of solving complex issues on 
control system related to get proper solution for 
convergence optimation [4]. 

Design of a system based on control theory and 
its application can be categorized into two systems, 
i.e. neutral system and retarded system. Neutral 
system, which its dynamics depends on delay 
condition and its derivatives. This system can be 
found in some process control and dynamics process 
system [5-7]. 

Some researches in the field of filter design are 
also considered of robust system analysis [1], [8-
10]. Filter design system on previous researches are 
                                                
∗ Corresponding author. 
   E-mail address: irawan_dani@yahoo.com 

mostly continous system. However, discrete/digital 
system can be implemented easier on a real 
condition. Therefore, on this paper we will discuss 
on design and analysis of discrete time robust filter 
using guaranteed cost method based on LMI 
approach [11]. System stability can be explained by 
using Lyapunov equation. 

Notations that are used on this paper as 
follow: uppercase letter of ”T” and superscript ”-1” 
imply transpose and inverse matrix. nℜ denotes 
Eucledian’s distance of n-dimensional space. 
Meanwhile, X >Y or X ≥ Y states X−Y is always 
positive definite or positive semidefinite. I is the 
appropriate identity matrix and * denotes symmetric 
element of symmetrical matrix. 

 
SYSTEM DESIGN 

 
 A discrete-time neutral system with 
uncertainty can be modeled as follow 

)())(()())(()1( hkxkGGkxkGGkx dd −Δ++Δ+=+  

)1())(( τ−+Δ++ kxkGG nn           (1) 
)()( kCxky =                 (2) 

[ ]0},,max{),()( τψ hkkkx −∈=           (3) 

where h  is time delay, τ  is neutral delay, 
nkx ℜ∈)(  is state vector, nky ℜ∈)( is measured 

output vector, n
nd GGG ℜ∈,, is suitable real 
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constant matrix, where denotes neutral time delay 
system, )()( kkx ψ=  denotes continuous vector of 
initial function, and C  is real constant matrix with 
certain value with appropriate dimension. 

Matrices )(),(),( kGkGkG nd ΔΔΔ are norm-
bounded real matrix functions that denote 
uncertainty parameter. Let 

,)()(,)()( GdGdGddGGG EkFDkGEkFDkG =Δ=Δ
GnGnGnn EkFDkG )()( =Δ              (4) 

where )(),(),( kFkFkF GnGdG  are uncertain matrix that 
depend on time and suite these inequalities as follow  

,)()(,)()( IkFkFIkFkF Gd
T
GdG

T
G ≤≤  

IkFkF Gn
T
Gn ≤)()(  

GnGdGGnGdG EEEDDD ,,,,,  are real constant 
matrices with certain value that has appropriate 
dimension.  

We design filter that asymptotically stable on the 
equations [1]-[3] as follow 

)()(ˆ)1(ˆ kLykxMkx +=+            (5) 
where M and L are state variable of the filter. 

Let error state vector and its derivation are 
modeled as follow 

)()()( kxkxke ⌢
−=              (6) 

)1()1()1( +−+=+ kxkxke ⌢     
)()))((()()1( kxMLCkGGkMeke −−Δ++=+  

)())(( hkxkGG dd −Δ++  
)1())(( τ−+Δ++ kxkGG nn          (7) 

Furthermore, define augmented matrix state vector 
as follow 
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Estimation of signal and upper boundary of 
guaranteed cost function that are minimized as 
follow  

)()( kKekz =             (10) 

∑
∞

−∞=

=
k

T kzkzJ )()(            (11) 

where )(kz is output state error and K is matrix 
with its weighting factor is determined before. So 
that 

)1()()()1( 332211 τ−++−+=+ kxGhkxGkxGkxa  (12) 
)()( 1 kxCkz a=  (13) 
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On the next equation, we use lemmas to prove the 
equations. 
Lemma 1. (see [5]). Let D and E are matrices with 
appropriate dimension, and F is matrix function that 
satisfies the equation IkFkF T ≤)()(  so for certain 
scalar valueα , will satisfy inequality as follow 

EEDDDFEDFE TTTTT 1−+≤+ αα  (14) 
 
 

RESULTS AND DISCUSSION 
 

On this part, sufficient conditions are required 
related to the existence of discrete time guaranteed 
cost filter. The main result of this study can be 
obtained by using Theorem 1. 

Theorem 1.  

Optimation problem and its constraints are given by 
these inequalities 

{ })(min 432121 JJJJtr +++++ γγ  

and constraints      
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with set of solutions as follow 

,0,0,0,0,0,0,0 >>>>>>> exex WWEEWSE
,0,0,0,0,0,0 4321 >>>>>> JJJJSS ex

).(),(),(),(,, 432121 JtrJtrJtrJtrγγ  (16) 

where 

,1−= EEinv ,1−= SSinv .1−=WWinv  

so that the system on equation (5) is guaranteed cost 
filter with upper boundary as follow 
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Note 1: LMI approach can be obtained by using 
iteration in order to satisfy inverse matrix 
corresponds with equation (15) and equation (16) 
[1]. 

Proof of Theorem 1. 

Define the candidate of Lyapunov function as 
follow 
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Difference of equation (18) according to equation 
(1) can be formulated as below 
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For providing asymptotic stability and for 
minimizing guaranteed cost on dynamics error 
process, we use the Lyapunov’s inequality below  

0)()( <−<Δ kzkzV T  (20) 
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For condition 0<ψ , by using Schur Complement 
[4], we can derive the equation as follow 
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and by using multiplication matrix, before and after, 
with })(,,,{ 1−+ SEIIIdiag , we have 
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Furthermore, equation (20) will be used as substitute 
on the following inequality 

  (24) 

give result as follow 
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where *J is guaranteed cost, and each element from 
the equation (25) is defined as follow 
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Obviously that the equation (26) refers on the 
equation (16). Hence, the robust filter design suites 
the model. 

For numerical example and its implementation 
will be conducted on the following study. 
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