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Abstract 
The convergence of energy states and wave functions of helium atom is presented. The energy states are 
obtained by diagonalizing the helium Hamiltonian in a non-orthogonal Laguerre basis. Some of the energy 
states will be exact discrete eigenstates, others will be a discrete representation of the continuum states. As 
the basis size N increases the lowest bound states in energy states converge to the exact eigenstates, whereas 
the positive energy states provide an increasingly dense discretization of the continuum. The convergence of 
wave functions is obtained by the Gauss-Pollaczek quadrature method. 
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Abstrak 
Telah dikaji konvergensi tingkat energi dan fungsi keadaan atom helium. Tingkat energi diperoleh dengan 
mendiagonalisasikan Hamiltonian helium terhadap basis Laguerre non-orthogonal. Beberapa dari tingkat 
energi akan diperoleh dalam bentuk energi diskrit eksak, yang lainnya berupa tingkat energi kontinu yang 
dinyatakan dalam bentuk diskrit. Jika jumlah basis N ditambah, tingkat energi terikat konvergen terhadap 
tingkat energi eksak, sedangkan tingkat energi kontinu positif memperoleh penambahan jumlah yang banyak 
dalam bentuk diskrit. Konvergensi untuk fungsi keadaan diperoleh dengan metode Gauss-Pollaczek 
quadrature. 

Kata kunci : Diagonalisasi, Hamiltonian, Laguerre non-orthogonal, Gauss-Pollaczek quadrature 

1. Introduction 
Atomic collision phenomena are of 

fundamental importance in atomic and molecular 
physics. The understanding of atomic collision 
phenomena requires the complete information of 
the energy states and wave functions of the target 
atom. Our study of many-electron atoms is started 
by considering the simplest one, namely atoms (or 
ions) consisting of a nucleus of charge Ze and two 
electrons, specially the helium atom. Our 
discussion is limited to the non-relativistic theory 
of two-electron atoms. Schrödinger’s equations 
cannot be solved exactly for two-electron atoms 
or ions, so that approximation methods with a 
finite basis of L2 type must be used. The L2 
method which uses square integrable functions 
has been the subject of considerable study for 
solutions of quantum scattering problems. In this 
model one uses a finite basis of L2 functions to 
diagonalize the target Hamiltonian which has a 
discrete spectrum of L2 wave functions 
corresponding to the bound states and in addition 

a continuous spectrum of positive energy states. 
The diagonalization in the finite L2 bases gives 
both negative and positive energy states. The 
basis is usually chosen so that the lowest-lying 
channels are described adequately while the other 
bound states are collectively approximated by 
remaining negative energy eigenvectors. The 
positive energy eigenstates and associated L2 
eigenfunctions in some way approximate the 
target continuum. A new method for performing 
scattering calculations entirely with the L2 
functions of Laguerre types began when Heller 
and Yamani1) attempted to take full advantage of 
the analytic properties of a given Hamiltonian and 
also of the L2 basis which is used to describe the 
wave function. Specifically, they develop the 
basic theory using Laguerre-type basis functions 
appropriate for s-wave scattering. Since Yamani 
and Reinhardt2) who developed a systematic 
approach to illustrate the mathematical sense in 
which the L2 functions would approximate 
continuum scattering solutions, the L2 functions 
of Laguerre type have been widely applied to 
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describe the scattering processes. Stelbovics and 
Winata3) have also studied and examined the 
convergence rates of L2 expansion  of Laguerre 
types. They showed that the L2 wave function 
converges to the exact Coulomb wave function in 
the space coordinate representation. It is the 
purpose of our attention to present a study of the 
L2 expansion methods for the helium atom 
system. 

2. Theory 
Hamiltonian HT of the non-relativistic 

helium target can be written as4) 
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for i = 1, 2, are the one-electron Hamiltonians of 
the He+ ion, and 
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is the electron-electron potential. Atomic units are 
assumed throughout. 

We use the L-S coupling scheme, and so 
the helium wave functions πlsΦ are 
characterizated by the orbital angular momentum 
l, spin s, and parity π . One-electron orbitals 

( )xαϕ , which are used to build the two-electron 
basis, are the product of radial functions, 
spherical harmonics, and spin functions (σ=±1/2)  
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Notation of α and β are used to denote first and 
second electron. Here x is used to denote both the 
spatial and spin coordinates. The radial part of the 
single-particle functions we take to be the non-
orthogonal basis 
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where the are the associated Laguerre 
polynomials, and k ranges from 1 to the basis size 
N. 
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For brevity of notation we denote helium 
states by , where n = 1,…, N, with 
corresponding orbital angular momentum l = l

( 21, xxls
n
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n , 
spin s = sn , and parity π = πn , which may be 
written as  
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Here the configuration interaction (CI) 
coefficients ( )nCαβ  satisfy the symmetry property 

( ) ( ) ( )nsllln CC nn
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βα −−+−= 1  (2.7) 

to ensure antisymmetry of two-electron target 
states. The two-electron  functions in (2.6) are 
given by  
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where ( ) βαπ ll +−= 1 , 
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and the two-electron spin function is defined by 
( ) ( ) ( 21

,
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The target states ( )21, xxls
n
πΦ  satisfy 

0=Φ−Φ nnTm EH , (2.11) 

where En is the energy associated with 
( )21, xxls

n
πΦ . 

Calculation of equation (2.11) without the 
electron-electron potential leads to the recurrence 
formula 
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where 
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Calculation of the correction factor for the 
recurrence formula is made by the electron-
electron potential given as follows 
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The Gauss-Pollaczek quadrature formula 

to ensure the completeness of eigenfunctions is 
given by5) 
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the limit a and b comprise any interval which 
covers the point and continuum spectrum mapped 
into X variables. WNi are associated quadrature 
weight which are given by 

( ) ( )NiNNiN

N
Ni

xp
dx
dxp

W
1

21 ...

−

=
λλλ

. (2.18) 

3. Result and Discussions 
In Table 3.1. energy states which are 

produced from L2 expansions are shown for l = 0 
and λα = 4.0 a-1 , λβ = 1.02 a-1 , and different 
bases sizes N = 10 and 11. The choice of  λα = 4.0 
a-1 , λβ = 1.02 a-1 ensures that the first  three states 
converge to the true 11S, 23S, 21S helium atom 
bound states.  

 
Table 3.1. Energy states which are produced from L2 expansions for basis sizes N = 10 and 11. 
 

N i Energy states ENi (a.u.) 
(Calculation results) 

E (a.u.) 
(Experimen results) 

(Moore, 1971)6)

10 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11S 
23S 
21S 

-2.903710 
-2.175411 
-2.145751 
-1.896700 
-0.396721 
0.012680 
0.219081 
0.606900 
3.108415 
8.364555 

-2.903720 
-2.175230 
-2.145970 

11 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

11S 
23S 
21S 

-2.903710 
-2.175411 
-2.145751 
-1.896700 
-0.396721 
0.012680 
0.219081 
0.606900 
3.108415 
8.364555 
9.367666 

-2.903720 
-2.175230 
-2.145970 

 
In Table 3.2. the values of WNi are shown for λα = 1.02 a-1 , λβ = 0.0 a-1 and different basis sizes N = 1, 5, and 
10. The table shows the weight calculated by equation (2.18). Looking at Table 3.2, it is clear that for chosen 
basis only the ground state will contribute a negative weight. 
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Table 3.2. The Gauss-Pollaczek quadrature weight of L2 expansion in the finite basis for different basis sizes 
N=1,5,10. Powers of ten are denoted by the numbers in brackets. 
 

N i WNi
∑
N

i
NiW  

XNi

1 1 -.1634910463(+1) -.1634910463(+1) .2040816327(+1) 
5 1 

2 
3 
4 
5 

-.1729606085(+1) 
+.7773932765(-2) 
+.7457191089(-2) 
+.1858863495(-1) 
+.6087568342(-1) 

 
 

-.1634910463(+1) 

+.1703620224(+1) 
-.5050495050(+2) 
-.2438986170(+1) 
-.7987655172(+0) 
+.5864060803(+0) 

10 1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

-.1733402595(+1) 
+.7773932765(-2) 
+.6310892815(-2) 
+.2733938325(-2) 
+.3490662992(-2) 
+.6301203019(-2) 
+.1084137596(-1) 
+.1783041170(-1) 
+.2492564429(-1) 
+.1828407030(-1) 

 
 
 
 

-.1634910463(+1) 

+.1703068009(+1) 
-.5050495050(+2) 
-.2491534568(+1) 
-.1626246288(+1) 
-.1224730895(+1) 
-.7411483106(+0) 
-.2068158782(+0) 
+.2946584980(+0) 
+.6917840074(+0) 
+.9315687946(+0) 

 

4. Conclusions 
Numerical calculations of recurrence formula 

in equation (2.12) and (2.15) resulted in the 
energy states. Some of them are exact discrete 
eigenstates, whilst others are discrete 
representations of the continuum states. As the 
basis sizes N increases, the lowest bound states in 
energy states converge to the exact eigenstates, 
whereas the positive energy states provide an 
increasingly dense discretization of  the 
continuum. The completeness of eigenfunctions 
was derived in terms of the Gauss-Pollaczek 
quadrature rule. It is shown that the total weight 
converges to the same number for different basis 
size. The convergence of related work functions is 
clearly indicated by the first weight in the Tabel 
3.2 which relates to the ground state. 
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