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Abstract 

One-dimensional ideal diatomic gas is simulated through possible types of motions of its molecule. Energy of each 
type of its motion is calculated by both theoretical and numerical methods. Analytical calculation of kinetic energy 
of an atom in translational-vibrational motion is not simple, but it can be solved by numerical method using 
molecular dynamic simulation. This paper justifies that the kinetic energy of a diatomic molecule can be determined 
by two different approaches which give the same results. In the first approach, the kinetic energy is calculated as a 
summation of kinetic energy of each atom. In the second approach, the kinetic energy is calculated as a summation 
of kinetic energy of translational and vibrational motions. 
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1. Introduction 

Motion of diatomic gas molecules, which is 
temperature dependent, is contributed from three types 
of motion: translational, rotational, and vibrational. It 
is already obvious to consider that those types of 
motion are independent, which lead to the well known 
concept of equipartition energy and degree of 
freedom. This concept has been theoretically 
established1,2). Students generally do not realize that a 
diatomic molecule may make a motion contains more 
than one type of motion, as we have been observed 
recently. Therefore, it is required to build a model of 
motion of a diatomic molecule in order to connect 
between that abstract concept and students’ concrete 
understanding. 

One way to model the motion of gas molecules 
is to use a simulated granular material. An atom is 
modeled as a ball. One method that is commonly used 
is the soft-sphere3) using molecular dynamics method 
implemented Gear predictor-corrector algorithm4). As 
a first step, the problem is limited to one-dimensional 
case. There is a study on collision properties5) and 
energy transport6), free cooling7), and kinetic 
description8) of one-dimensional granular gas. One-
dimensional ideal diatomic gas which is simulated 
through motion of a molecule in order to observe its 
possible types of motion is reported in this work. 
Energy calculation from theory and numerical method 
is also discussed. 

2. Theoretical Background 

This paper discusses a one-dimensional ideal 
diatomic gas so that there are no friction and no van 
der Waals forces. The gas is kept at constant 
temperature. A diatomic gas molecule is modeled as 
two atoms which are connected by an ideal spring to 
relate the inter-atomic bonding. For one-dimensional 

motion, the molecule is moving with its trajectories 
are straight lines. A molecule can move translational, 
vibrational, or translational-vibrational. The energy of 
this molecule is discussed by reviewing the kinetic 
energy and potential energy separately. 

 

 
Figure 1. A model of a diatomic molecule as two 
atoms connected by an ideal spring. 

Mass, position, velocity, momentum and kinetic 
energy of the ith atom are denoted by iiii pvxm
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,,,  and 

iK . Index s denotes for system of a diatomic 
molecule. Kinetic energy of the system is 
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If a diatomic molecule is treated as a point, coordinate 
and momentum of this point correspond to the center 
of mass (com) of the molecule so that there are two 
groups of variables. The first is related to the center of 
mass, while the latter to internal system denoted by 
Greek symbol. Kinetic energy of the system is then 
written as9): 
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where µ is the reduced mass of the system 
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12ρ  is distance between the two atoms and 12ρ&  is its 
time derivative. 
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If the spring between two atoms in the system has 
spring constant k then potential energy of the system is 

( )21202
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where 0ρ  is an equilibrium distance. 
The energy of the molecule is  
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3. Simulation Procedure 

Two grains which are connected with an ideal 
spring are used to simulate a diatomic molecule. The 
spring force ijS

r
 between the two grains is: 

( ) ijijijij vkS
rr

γρρρ −−= ˆ0  (8) 

γ is a constant called damping coefficient and the role 
of ijv

r
γ−  is a dissipative force. 

Period of vibrational motion is 

kvib
µπτ 2=  (9) 

Gear predictor-corrector algorithm of fifth order4) is 
chosen in the molecular dynamics method used in the 
simulation, which has two steps: prediction step 
(written with upper index p ) and correction step for 
every particular grain. The first step is formulated as 
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And the correction step will give the corrected value 
of )( ttrn ∆+

r
 through 
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with 
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The term )( ttrn ∆+
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where 0r
r

 is position of a grain. The term )(2 ttr ∆+
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 in 
correction term in Equation (12) is obtained from 
Newton' second law of motion. For example, particle 
i  has  
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The left part of Equation (11) is calculated using 
)( ttr p
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4. Results and Discussion 

4.1 Kinetic, potential, and mechanical energies 

A simulation result for a diatomic molecule in 
translational, vibrational, and translational-vibrational 
motions are given in Figure 2. Position of the two 
atoms as a function of time is shown for each case. 
Simulation parameters are 221 == mm , k  = 100, and  
γ = 0. The two atoms are initially at ( ) 5.001 −==tx

r and 
( ) 5.002 ==tx

r  so that its equilibrium distance 0.10 =ρ . 

 

 
 

 
Figure 2. Position-time graph for the two atoms of a 
molecule: (a) translational, (b) vibrational, and (c) 
translational-vibrational motion. 
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The translational velocity of the atoms in 
Figure 2(a) is 1.021 == vv

rr
 so that the distance 

between the atoms is constant ( 0.1012 == ρρ ) and its 

time derivative is zero ( 01212 == v
r&rρ ). Kinetic, 

potential, and total energies for this translational 
motion are 
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In Figure 2(b) each atom is deflected outward 0.2 
from their initial positions so that molecule vibrates 
with amplitude A = 0.4 at period τvib= 0.2π. The 
distance between the two atoms from its equilibrium 
changes with time in sinusoidal function. 

( ) ( )tA vibij ωρρ cos0 =−  

Its relative velocity between the two atoms is also in 
sinusoidal function. 

( )tA vibvibij ωωρ sin−=&  

For this vibrational motion, position of the center of 
mass is fixed ( 0=sv

r
 and 0=sp

r
). Kinetic, potential, 

and total energies for this vibrational motion are 
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Figure 2(c) shows translational-vibrational motion. 
Kinetic, potential, and total energies for this motion 
are 
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4.2 Kinetic energy 

For translational-vibrational motion shown in 
Figure 2(c), its kinetic energy of the diatomic 
molecule is calculated using two different ways. First, 
kinetic energy is determined from each atom based on 
equation (1) as shown in Figure 3(a). Second, kinetic 
energy is determined from translational and 
vibrational motion separately based on equation (2) as 
shown in Figure 3(b). 

 
(a) 

 
(b) 

Figure 3. Kinetic energy-time graph for molecule 
motion in Figure 2(c): (a) kinetic energy of each atom 
(b) kinetic energy for translational and vibrational 
motions separately. 

Calculation of kinetic energy of an atom 
moving in translational-vibrational motion is not 
analytically simple, since it is not easy to express its 
mathematical function of its motion. However, it will 
be possible to determine its kinetic energy with the 
numerical method of molecular dynamic (Figure 3(a)). 
It can be seen from Figure 2(c) that its maximum 
magnitude of tangent (maximum speed) of m1  in time 
interval 0 and 0.314 is at t = 0.57 and this maximum 
speed is slightly greater than that at t = 0.471 in time 
interval 0.314 and 0.628. It can also be observed that 
the maximum speed of m2 is slightly greater than that 
of m1 at time interval 0 and 0.314. Therefore, the 
maximum kinetic energy of m1 is not exactly the same 
as m2 and their values change alternately with time 
(Figure 3(a)). 

Kinetic energy from translational motion and 
vibrational motion has been calculated in equations 
(15) and (18) respectively and its total is in equation 
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(21). Since Ktrans is small compared to Kvib then the 
total is nearly the same as Kvib (Figure 3(b)). 

Other phenomenon that is also interesting in 
gas is thermal transport. To study this property, 
temperature of the gas must be varied with time or 
position. On the other hand, the influence of electron 
distribution among atoms in a diatomic molecule can 
also be investigated by defining Hamiltonian for the 
system. Those two topics could be themes for further 
study. 

5. Conclusion 

Motion of a diatomic molecule has been 
simulated using granular particles. For one-
dimensional ideal gas, kinetic energy of a diatomic 
molecule can be calculated as a total of kinetic energy 
from each atom or a total of kinetic energy from 
translational motion and vibrational motion. 
Calculation of kinetic energy of each atom can be 
solved by numerical method using molecular dynamic 
simulation. 
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