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Abstract 

The effect of a magnetic field on buoyancy-driven flow and heat transfer in a trapezoidal enclosure filled with a 
fluid-saturated porous medium is studied numerically using the finite difference method. The inclined sloping 
boundaries are treated by adopting staircase-like zigzag lines. The sloping walls are maintained isothermally at 
different temperatures. The top and bottom horizontal straight walls are kept adiabatic. The results indicate that the 
heat is transferred almost entirely by pure conduction with a sufficiently large magnetic field. Utilitizing the square 
geometry is more effective to suppress the heat transfer rate than the trapezoidal geometry. 
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1. Introduction 

Convective flows in porous media have 
occupied the central stage in many fundamental heat 
transfer analysis and has received considerable 
attention over the last few decades. This interest is due 
to its wide range of applications, for example, high 
performance insulation for buildings, chemical 
catalytic reactors, packed sphere beds, grain storage 
and such geophysical problems as frost heave. Porous 
media are also of interest in relation to the 
underground spread of pollutants, solar power 
collectors, and to geothermal energy systems. 

Most of the published papers are concerned 
with the analysis of buoyancy-driven flow and heat 
transfer in square/rectangular enclosures filled with 
porous media; see, for example, Manole and Lage1), 
Goyeau et al.2) and Saeid and Pop3). In reality, natural 
convection in a differentially heated enclosure is a 
prototype of many industrial applications and in 
particular, a trapezoidal enclosure has received 
considerable attention because of its applicability in 
various fields. The moderately concentrating solar 
energy collector is an important example involving a 
trapezoidal geometry. The absorbing surface and side 
walls are enclosed by the addition of cover plate. The 
cover plate, which is at the lower temperatures than 
the absorber is used to suppress convection and 
radiation heat losses. The side walls are reflective 
surfaces and could contribute the overall convective 
field in the groove.  

The study of convective flow in a trapezoidal 
geometry is more difficult than that of square or 
rectangular enclosures due to the presence of sloping 
walls. In general, the mesh nodes do not lie along the 
sloping walls and consequently, from a programming 
and computational point of view, the effort required 
for determining flow characteristic increases 
significantly. Relatively little work has been done in a 

porous trapezoidal geometry. Kumar and Kumar4) 
applied finite element method with GMRES, a Krylov 
subspace based solver to solve natural convection in a 
porous trapezoidal enclosure. Varol and Oztop5) 
solved the problem by finite difference method, 
regular rectangular grid and adopting staircase-like 
zigzag lines for the inclined boundaries. However, 
they4,5) did not considered effect of a magnetic field. 

Bian et al.6) investigated the effect of a 
transverse magnetic field on natural convection in an 
inclined porous rectangular enclosure. In particular, 
they found that the magnetic field has a profound 
effect on the transition angle from a single-cell to a 
multiple-convection pattern. This study was later 
extended by Grosan et al.7) to study an effect of an 
inclined magnetic field when internal heat generation 
takes into account. It was shown that both the strength 
and inclination angle of the magnetic field have a 
strong influence on convection modes. To the best of 
our knowledge, investigation of the effects of a 
magnetic field on natural convection in a trapezoidal 
enclosure filled with a fluid-saturated porous medium 
has not been undertaken yet. The purpose of the 
present paper is therefore, to investigate the effects of 
a magnetic field on buoyancy-driven flow or natural 
convection in a porous trapezoidal enclosure.  

2. Mathematical formulation 

We consider the steady, two-dimensional 
natural convection flow in a trapezoid region filled 
with an electrically conducting fluid-saturated porous 
medium, see Figure 1(a). The co-ordinate system 
employed is also depicted in this figure. The top and 
bottom surfaces of the convective region are assumed 
to be thermally insulated and the sloping surfaces to 
be heated and cooled at constant temperatures Th and 
Tc, respectively. θs is the inclination angle of the 
sloping walls. θs = 90o means that enclosure is a 
square with width L. 
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Figure 1. Schematic representation of the model (a), 
Grid-points distribution (b). 

A uniform and constant magnetic field B
r

 is 
applied normal to gravity direction. The viscous, 
radiation and Joule heating effects are neglected. The 
resulting convective flow is governed by the combined 
mechanism of the driven buoyancy force and the 
retarding effect of the magnetic field. The magnetic 
Reynolds number is assumed to be small so that the 
induced magnetic field can be neglected in favor of 
the applied magnetic field.  

Under the above assumptions, the conservation 
equations for mass, momentum under the Darcy 
approximation, energy and electric transfer are given 
by: 

· 0 ,V∇ =
r  (1) 

( ),KV g I BP ρ
µ

= −∇ + + ×
r r rr  (2) 

2( · ) ,m TV T α∇ = ∇
r  (3) 

· 0 ,I∇ =
r  (4) 

( ),I V Bσ ϕ= −∇ + ×
r r r  (5) 

0[1 ( )]cT Tρ ρ β= − −  (6) 

where ( , )V u v=
r  is the fluid velocity vector, T is the 

fluid temperature, P is the pressure, B
r

 is the external 
magnetic field, I

r
 is the electric current, ϕ is the 

electric potential, gr  gravitational acceleration vector, 
K is the permeability of the porous medium, αm is the 
effective thermal diffusivity, ρ is the density, µ is the 
dynamic viscosity, β is the coefficient of thermal 
expansion, cp is the specific heat at constant pressure, 
σ is the electrical conductivity, ρ0 is the reference 
density and ϕ−∇   is the associated electric field. As 
discussed by Garandet et al.8), Eqs. (4) and (5) reduce 
to 2 0ϕ∇ = . The unique solution is 0ϕ−∇ =  since there 
is always an electrically insulating boundary around 
the enclosure. Thus, it follows that the electric field 
vanishes everywhere9). Furthermore, eliminating the 
pressure term in Eq. (2) in the usual way then the 
governing Eqs. (1) - (6) can be written as 

0,u v
x y
∂ ∂

+ =
∂ ∂

 (7) 

2
0 ,KBu v gK T u

y x x y
σβ

ν µ
⎛ ⎞∂ ∂ ∂ ∂

− = − − ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (8) 

2 2

2 2 .m
T T T Tu v
x y x y

α
⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9) 

where 
0B  is the magnitude of B

r
 and ν is the kinematic 

viscosity of the fluid. The following are the boundary 
conditions: 

2 3    on : 0, ,cu T T= =l l  

1 4on : 0, ,hu T T= =l l  

1 2 3 4on , : 0, 0.Tv
y

∂
= =

∂
l l l l  (10) 

Now we introduce the following non-dimensional 
variables 

, , , , c

m m

T Tx yX Y U u V v
Tα α
−

= = = = Θ =
∆

l l

l l
 (11) 

Introducing the stream function Ψ defined as 
YU ∂Ψ∂= /  and XU ∂Ψ−∂= / , and using 

expressions (11) in Eqs. (7) - (9), we obtain the 
following partial differential equations in non-
dimensional form: 

2 2
2

2 2(1 ) ,Ha Ra
X Y X
∂ Ψ ∂ Ψ ∂Θ

+ + = −
∂ ∂ ∂

 (12) 

2 2

2 2 .
X Y Y X X Y
∂ Θ ∂ Θ ∂Ψ ∂Θ ∂Ψ ∂Θ

+ = −
∂ ∂ ∂ ∂ ∂ ∂

 (13) 

Subject to the boundary conditions 

2 3on :  0,  0,L L Ψ = Θ =  

1 4on :  0,  1,L L Ψ = Θ =  

1 2 3 4on , :  0,  0.L L L L
Y
∂Θ

Ψ = =
∂

 (14) 

where / ( )mRa gK L Tβ α ν= ∆  is the Rayleigh number, 
and 2

0 /Ha KBσ µ=  is the Hartman number for the 
porous medium. Once we know the temperature we 
can obtain the rate of heat transfer from the hot 
sloping wall, which is given in terms of the mean 
Nusselt number at the hot wall as 
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1

 d
L

m
L

Nu Y
X
∂Θ

= −
∂∫

 (15) 

3. Finite Difference Method 

We employed the finite difference method to 
solve Eqs. (12) and (13) subject to (14). The central 
difference method was applied for discreetizing the 
equations. The solution of the algebraic equations was 
performed using the Gauss-Seidel iteration with 
relaxation method. The unknowns Ψ  and Θ  are 
calculated until the following convergence criterion is 
fulfilled: 

1
, ,

max ,
1

,

n n
i j i j

n
i j

ζ ζ
ε

ζ

⎡ ⎤+ −⎢ ⎥
≤⎢ ⎥

+⎢ ⎥
⎢ ⎥⎣ ⎦

 (15) 

where ζ is either Ψ or Θ, n represents the iteration 
number and ε  is the convergence criterion. In this 
study, the convergence criterion is set at ε = 10-6. The 
mean Nusselt number in Eq. (15) was calculated using 
the integration trapezoidal rule. 

A regular rectangular grid is placed over the 
trapezoidal enclosure. Selecting an appropriate aspect 
ratio and density is compulsory to maintain the 
sloping boundaries match exactly at the nodal point as 
displayed in Figure 1 (b). The solution domain of the 
trapezoidal which equations are applied, denoted by 
bold node. The typical numerical run used was a 33 x 
100 (θs = 72o) grid. We also performed a few runs 
with 65 x 197 and 129 x 391 grids to check the 
accuracy, finding good agreement with runs using the 
33x100 for the same parameter values. As a 
validation, our results for the mean Nusselt number for 
the case θs = 72o and untitled trapezoidal enclosure 
compares well with that obtained by Varol and 
Oztop5), in the absence of a magnetic field (Table 1). 
Table 1 also shows the good agreement between our 
result and the existing results for a porous square (θs = 
90o) enclosure without magnetic field effect. 

Table 1. Comparison of the Num for some results from 
the literature at Ra = 1000. 

sθ  References  Num 
Varol and Oztop5) 9.170 

72o Present result 9.158 
Manole and Lage1) 13.637 
Goyeau et al.2) 13.470 
Saeid and Pop3) 13.726 
Varol and Oztop5) 13.564 

90o Present result 13.199 
 

4. Result and Discussion 

 
 
Figure 2. Contour plots of the stream function and 
temperature for Ra = 100, θs = 72o and Ha = 0 (a), Ha 
= 2 (b), Ha = 20 (c). 

Figure 2 shows the evolutions of the fuid 
motion and the distribution of heat for 100Ra =  and 
different magnetic fields with an inclination angle of 
the sloping wall, θs = 72o. The fluid motion as shown 
in the figure is described as follows. Since the 
temperature of the left wall is higher than that of the 
fluid inside the enclosure, the wall transmits heat to 
the fluid and raises the temperature of fluid particles 
adjoining the left wall. When the temperature rises, 
the fluid starts moving from the left wall (hot) to the 
right wall (cold) and falling along the cold wall, then 
rising again at the hot wall, creating a clockwise 
rotating cell inside the enclosure. When the magnetic 
field is imposed on the enclosure, the intensity of 
convective motion weakens significantly (known from 
absolute value of Ψmax). The core of the vortex is 
towards the top wall; see Figure 2(b), 2(c). The 
isotherms are almost perpendicular with the horizontal 
wall as Ha increase. This indicates that heat is 
transferred almost entirely by pure conduction with a 
sufficiently large magnetic field. 
 

(a) 

(b) 

(c) 
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Figure 3. Contour plots of the stream function and 
temperature for Ha = 5, Ra = 100 and θs = 67o (a), θs = 
72o (b), and θs = 81o (c). 

The effects of θs on the stream function and isotherm 
are shown in Figure 3 for Ha = 5 and Ra = 1000. This 
figure reveals that θs is not having the major effect on 
the flow and temperature pattern, where only a little 
increasing in convective motion occurred. 

 
Figure 4. Plots of the Num against Ra. for the values of 
Ha. labelled on the figure withθs = 72o. 

Figure 4 demonstrates the relationship between 
the mean Nusselt number and the Rayleigh number for 
the case θs = 72o and different values of Ha. Naturally, 
the heat transfer increases with increasing Ra. The rate 
of heat transfer is progressively reduced by the 
presence of a magnetic field. Furthermore, for a 

sufficiently large magnetic field, increasing Ra no 
longer effect to the heat transfer rate. 

The variations of the mean Nusselt number 
with Ha. for different values of θs are shown in Figure 
5. In general, the Num initially decreases steeply with 

.Ha  As the value of Ha is made larger, the strength 
of the heat transfer is progressively suppressed and the 
Num goes to fixed value. We observed that θs = 67o is 
the most effective to suppress the heat transfer rate 
when magnetic field is neglected. However for a 
sufficient large magnetic, θs = 81o is the most effective 
to suppress the heat transfer rate. 

 
Figure 5. Plots of the Num against Ha. for the values of 
θs labelled on the figure with Ra = 1000. 

4. Conclusion 

The present numerical study exhibits several 
interesting features concerning the effect of the 
transverse magnetic fields on buoyancy-driven flow 
and heat transfer in a trapezoidal enclosure filled with 
a porous medium. The main conclusions of the present 
analysis are as follows. The heat is transferred almost 
entirely by pure conduction with a sufficiently large 
magnetic field. Utilitizing square enclosure is more 
effective to suppress the heat transfer rate than the 
trapezoidal enclosure. A discussion on a more general 
configuration will constitute the subject of our 
subsequent investigation to treat more complex 
problems, such as time-dependent flows. 
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