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Abstract 

The energy dependence of level density parameter has been calculated using extended wood-saxon potential. The 
extended version of potential has deep well parameter that is independent to the nucleon density. The potential is 
pure central interaction. Although the potential is different from mean field theory, it gives the better result than that 
of the reference input parameter library-2 (RIPL-2). The application of the level density parameter results in small 
discrepancies from ENDF results. This method has been adopted in example for calculating fission products of Pu-
238.   
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1. Introduction 

In statistical mechanics calculation, such as 
evaporation model of nuclear reaction, spallation 
neutron measurements and studies of intermediate-
energy heavy ion collision, level density plays an 
important role1-3). There are theoretical approaches 
have been developed to study the level density4-6). 
Parameter that holds very important role in the level 
density is level density parameter7). The commonly 
used of the level density parameter is an energy 
dependence parameter8-9).   

The asymptotic value of the level density 
parameter is reached at infinite excitation energy10). 
Variation value is influenced by shell correction 
approach. Highly excitation state gives small variation 
of level density parameter values. The shell correction 
emerges as an effect of difference between the 
experimental nuclear mass and the semi empirical 
nuclear mass11).  

In the level density study, the semi empirical 
nuclear mass is influenced mainly by pair and shell 
correction. In the shell correction, fission barrier 
determines the variation of an eigen energy to smooth 
curve parts.  In order to transfer the problem to 
become modest, the simple potential is usually chosen, 
such as an infinite square well or harmonic oscillator. 
The standard wood-saxon potential is one of the 
simple potential that commonly used for this purpose. 
However, the skin depth of this potential should be 
chosen randomly. 

In order to overcome the later burden, an 
extended wood-saxon potential has been proposed for 
the present study. The extended wood-saxon potential 
is complex potential; hence the calculation needs 
numerical treatment. To reduce this complexity, the 
smooth curve calculation uses Gauss-Hermite folding 
technique12). 

2. Formulation 

The energy dependence of the level density is 
approximated by the formula13): 
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a~  parameter is the asymptotic value at infinite 
excitation energy U .  There are three-semi empirical 
formulas of a~ 14). In this paper the Iljinov formula has 
been chosen as the asymptotic parameter.  
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U is the value of excitation energy that was 

approximated by the following equation15): 

CC taU =  (3) 

and Ct  is the critical temperature.  
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The semi empirical level density parameter Ca  
has been proposed by Gilbert-Cameroon4). 
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with )( Feg  is a single particle level density at fermi 
level that is MeVeF 33≈ . )( Feg , which calculated by the 
following expression16). 
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where the potential V(r) s the extended wood-saxon 
potential: 
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The potential is expanded through so-called the 
leptodermous approximation, hence equation (6) 
become 
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where limr  is the effective nuclear radius limit, 

( )[ ]dRr 0,618lnlim +=  (8) 

Because of non-mean field approximation, the 
coulomb interaction uses the point to sphere 
technique17), 
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then the interaction depicted by 
)()()( rVrVrV CoulWS += , which replace the conventional 

one ∫= 2
3

121 )()( rdrVrV rrr . 

The iteration technique is applied to equation 
(1) to get the level density parameter18). 

( )( )⎥⎦
⎤

⎢⎣
⎡ −−+=

=

+=

+
)(

)(1

2)(
0

exp11~

)1(~

n
ni

Cn
n

U
U

Eaa

taU

Eaa

γδ

δ  (11) 

Eδ  Parameter in equation (11) is so-called shell 
correction, which is calculated using formula below, 

CalcMME −= expδ  (12) 

The experimental nuclear masses 
expM  are taken from 

AME2003 table19) while CalcM  is calculated from the 
binding energy formula, 
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 (13) 
which all coefficients of equation (13) were compiled 
by Royer20). 

Where  
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and 
shellE  represents the shell correction, which is 

determined by21): 
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)(nε is an eigen energy, while )(nε  is smooth curve 
that was calculated from22): 
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where, 
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with fermi level λ  that was obtained from the 
following relation: 

Nn =)(λ  (14) 

N describes the nucleon number, where ( )εn  has the 
following expression. 
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3. Results and Discussion 

The extended wood-saxon potential has been 
applied in the level density parameter calculation. The 
Calculation that was obtained is compared with the 
reference input parameter library-2 (RIPL-2).  
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Figure 1. The calculated level density parameters 
(black) of 20<A<250 nuclei  
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Figure 2. RILP-2 level density parameters (black) of 2 
<A <250 nuclei.   

 
Figure 1 shows the level density parameters of 

the present work and Figure 2 illustrates the level 
density parameters of RIPL-2 result. These Figures 
clearly show that for A =20 to A = 150 graphs of the 
level density parameters almost have similar pattern. 
Small discrepancies are taken place around A = 75 
and between A = 120 up to A = 150 where the RIPL-2 
results are higher than the experimental results 

The peculiar of RIPL-2 results are taken place 
between A = 150 up to A = 200, where there are 
quadratic form in graph. The level density parameters 
of RIPL-2 have discrepancies significantly at that 
mass number range. Experimental results are lower 
than RIPL-2 at A = 200. The glare discrepancies 
between RIPL-2 and experimental one are showed at 
the range A = 225 up to A = 250.  

The weakness of RIPL-2 results is overcome 
by using the extended wood-saxon potential. Figure.1 
shows clearly that our calculation technique has 
results in lower values than that of RIPL-2 hence they 
have small discrepancies compared to the 
experimental one.  Especially for A = 125 up to A = 
250, the present calculation gives best results.   
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Figure 3 Extended wood-saxon shell correction of 
20<A<250 nuclei 
 

Figure 3 shows that the atomic mass number of 
above 125 gives the increasing of the shell correction 
rapidly hence equation (11) produces higher values.  
As a consequence, the increasing of shell correction 
value will trigger the decreasing of the level density 
parameter which finally results in our calculation give  
better results than that of RIPL-2.  
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Figure 4. Fission product of n(Pu238,X)f 
 

Implementation of the level density parameters 
result is for calculating the fission products of Pu-238 
as shown in Figure 4.  Although there are small 
discrepancies about A = 95 and A = 150, generally the 
results are acceptable. 

4. Conclusion 

The extended wood-saxon potential has been 
employed for calculation the level density parameter 
of nuclide and gives the better results compared to that 
of RIPL-2 especially at mass number of above 150. 
This potential is expanded through so-called the 
leptodermous approximation which is a skin depth 
approximation. This potential has been incorporated in 
calculating the fission products of Pu-238 which 
results in a good agreement with the experimental one. 
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