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Abstract 

Gauge freedom is one important property of gauge theory. It enables one to choose gauge fields that fulfill a certain 
condition for conveniences. Thus, gauge freedom leads more fruitful and interesting development of gauge theory. 
In this paper we will discuss some gauge condition related aspects where the generalized gauge is taken into 
consideration. More attention will be given to the FS gauge. 
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1. Introduction 

Gauge theory imposes that a Lagrangian of 
matter fields ψl(x) is invariant under the set of local 
infinitesimal phase transformations1) 
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In the above, summation over repeated indices 
is understood. The infinitesimal real parameters εa 
depend on the space-time coordinates and {ta} is a set 
of linearly independent constant matrices fulfilling the 
Lie algebra  
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The Jacobi identities for ta restrict the structure 
constants Cab

c = − Cba
c to satisfy the relations 
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The indices l, m have the values 1, 2, 3, … ,n 
where n is the size of the multiplet ψl(x), the n-plet, 
while the indices a, b, and c have the values 1,2, … up 
to the number of transformation generators ta. The 
invariant Lagrangian should have the form                     
L =L (ψ,Dµψ) where the covariant derivative Dµ is 
defined through 
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with the vector fields Aµ
b, called the gauge field, have 

to change according to 

cb
ca

baabbab

cab
ca

bb

ACDxD

xAxCxxA

µµµµ

µµµ

δε

εεδ

−∂=−=

+−∂=

),(

)()()()(
. (5) 

when the matter fields transform according to (1). The 
parameter εa are called the gauge functions. The 
transformations (1) together with (5) are called the 
infinitesimal gauge transformations of the second 
kind. That of the first kind is the global gauge 
transformation characterized by the independent of εa 
with respect to space and time coordinates. In this case 

the Lagrangian of free matter fields is already phase 
invariant, thus no gauge fields are necessary for the 
invariance. 

It turns out that the local gauge invariant 
Lagrangian contains both matter fields and gauge 
fields. The appearance of the gauge fields means that 
the matter fields are no longer free. Thus, a local 
gauge invariant Lagrangian describes a system of 
interacting fields. For the case of singlet, the indices l 
and m only have one value, say 1, thus can be 
discarded, and the matrices ta become numbers. The 
covariant derivative reduces into (Aµ

btb =Aµ): 
)()()()( xxieAxxD ψψψ µµµ −∂=  (6) 

or 
).())(()( xxeAixiD ψψ µµµ +∂=  (7) 

This expressions reminding us to the canonical 
momenta in classical electrodynamics: the interaction 
between a charge particle with the electromagnetic 
field Aµ can be described by replacing the linear 
momenta pi of free charge particles with their 
canonical momenta Pi=pi+eAi. Thus one can identify 
that the gauge field represents electromagnetic field 
when the corresponding matter fields are charged 
particles. Gauge theory extends this prescription to 
other types of fundamental interactions. The gauge 
theory for spinor fields describing, e.g., electrons is 
described by the Lagrangian (without external 
sources) 
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This Lagrangian is obtained by replacing 
partial derivatives in the Lagrangian of free spinor 
fields by the covariant ones. For general gauge fields, 
the Lagrangian of spinor fields is also of the above 
form, but with covariant derivative (4). 

The complete Lagrangian is given by inserting 
a term, say LA, describing the dynamics of the gauge 
fields. LA should be gauge invariance, otherwise the 
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complete Lagrangian (without external sources) is no 
longer gauge invariant. Requiring this invariance, the 
Lagrangian LA should have the form 

µν
µν

aa
A FF4

1−=L  (9) 

where the field strengths Faµν are defined as 
cba

bc
aaa AAgCAAF νµµνµµν ν
+∂−∂= . (10) 

The above field strengths reduce to the Maxwell field 
strengths for the Abelian (commutative) case, Cab

c,=0: 

µνµµν ν
AAF ∂−∂= . (11) 

Unlike to the more general of field strengths 
(the field strength in the non-Abelian case) the 
Maxwell field strengths are gauge invariant. Since the 
Maxwell field strengths are nothing but the electric 
and magnetic fields the gauge invariance of the field 
strengths means that infinite numbers of sets of scalar 
and vector potentials ),,( AA

r
Φµ  related to one and 

another through gauge transformations, give the same 
electric and magnetic fields. Thus we have a freedom 
to choose the set of potentials. The set of potentials 
chosen is a set fulfilling a certain condition or 
equation. This condition is called the gauge condition, 
the gauge choice, or simply the gauge. The known 
gauge choices are, among others, the Lorenz gauge 
∂µAµ=0, the Coulomb gauge 0=⋅∇ A

r
, the axial gauge 

nµAµ=0, and the Fock-Schwinger (FS) gauge xµAµ=0.  
Although, the field strengths of the non-

Abelian gauge are not gauge invariant there are also 
some degrees of freedom in non-Abelian case. Such 
degrees of freedom lead to divergence of the 
generating functional of the gauge fields. Fortunately, 
gauge fixing enables us to avoid this divergence.  

2. Explicit Potentials in Some Gauge Choices 

Different choice of gauge leads to different 
potential equations. For example, consider the 
inhomogeneous Maxwell equations in term of 
potentials: 
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Taking the Lorenz gauge  
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we have the inhomogeneous wave equations for both 
Φ and A

r
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with the solutions2) 
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When we take the Coulomb gauge 0=⋅∇ A
r

, instead 
of the Lorenz gauge, the equations for potentials read 
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The solutions are 
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The current tJ
r

 is called the transverse current as it has 
a zero divergence: 
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Thus we have two different sets of potentials 
),( CC A

r
Φ and ),( LL A

r
Φ but with the same electric and 

magnetic fields. Both sets of potensials can be related 
to each other through the gauge function ε according 
to the equation (5) with Cab

c =0: 
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From this equation we obtain 
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or 
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We have learnt that choosing the Lorenz gauge 
or the Coulomb gauge simplifies the potential 
equations and this enables us to derive the solutions. 
However not all gauge choices reduce the complexity 
of the potential equations leading to difficulties in 
obtaining the solutions directly through the potentials 
equations. Examples of such gauge choices are the 
axial gauge and the FS gauge. No expressions nµAµ 
and xµAµ in the potentials equations unable us to 
simplify the equations. The appearance of the so-
called inversion formulae in the FS gauge, however, 
makes it possible to derive potentials (the FS 
potentials) through the inversion formulae, not 
through the above potentials equations. The formulae 
are of the form3,4) 
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They express the potentials in terms of field 
strengths. Such expressions cannot be found in most 
other gauges. Thus, the inversion formula is the 
characteristics of the FS gauge. From the formulae we 
obtain the FS scalar and vector potentials  
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Since the same electric and magnetic fields can be 
obtained from different set of potentials one can 
rewrite the electric and magnetic fields in the right 
hand side of the above equations in terms of a set of 
(known) potentials, e.g. the Lorenz potentials: 
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Insertion of the explicit form of the Lorenz 
potentials into the above equations gives rise to the 
complete set of FS potentials. The complexities of the 
FS potentials are understood as due to the 

complexities of the inhomogeneous Maxwell 
equations in terms of FS potentials. The inversion 
formulae (23), or alternatively (24) and (25), have 
been considered for various applications.  

Similar relationship between the Gauge field 
and the field strength with that between the Christoffel 
symbol and the Riemannian tensor in general relativity 
enables us to derive inversion formulae in general 
relativity5): 
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In the above Γµ
FS and Rµν are matrices with the 

FS Christoffel symbols and Riemannian tensors, 
respectively, as their elements. The FS Christoffel 
symbols are Christoffel symbols fulfilling the FS 
condition xµΓµ

FS=0. The above inversion formulae 
lead to the geodesic equations into 
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The right hand side of the above equation 
describes Newtonian force per unit of mass. For 
speeds much less than the speed of light the above 
equation can be approximated to 
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giving the FS Newtonian gravitational potential (Φ is 
the familiar Newtonian gravitational potential) 
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3. Ghost-free and Non-ghost-free Gauges 

As has been mentioned in the previous section, 
problem of divergence in the generating functional of 
the gauge field can be solved by fixing a gauge. In 
overcoming this problem Faddeev and Popov defined 
a gauge invariant functional ∆[A] 

{ } 1)( )(][
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In the above ε(x) is a gauge parameter and thus 
aA )(ε

µ are gauge-transformed gauge fields. The Dirac 
delta function in the right hand side shows that the 
Lorenz gauge has been taken into account. The above 
expression leads to the identity 
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By inserting this identity into the generating 
functional for the gauge field, the gauge parameter ε 
that is responsible for the divergence can be fully 
pushed into the integral measure Dε. Accordingly, 
integration over ε gives rise to a factor with an infinite 
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value. This factor can be absorbed into the 
normalization factor of the generating functional, 
leaving the generating functional finite. Besides 
solving the divergence problem, this mechanism leads 
to two important points: (1) the Dirac delta function, 
through averaging under the Gaussian weight, is 
equivalent to adding a gauge fixing Lagrangian Lgf 
into the gauge field Lagrangian (9), (2) the functional 
∆[A] transforms into a Lagrangian of so-called ghost 
fields, the Grassmannian fields fulfilling the massless 
Klein-Gordon equation. Note that the gauge fixing 
Lagrangian above has the form (λ is a parameter) 
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2
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gf A∂−=L . (32) 

Note also that in the Abelian case the functional ∆[A] 
is just a number and thus can be inserted into 
normalization factor of the generating functional. 
Accordingly, ghost fields can be discarded in Abelian 
gauge theory.  

Now, when we replace the partial derivative ∂µ 

in the Dirac delta function with fµ, where fµ can be a 

constant vector nµ, the space-time coordinate xµ, or the 
partial derivative ∂µ, the functional ∆[A] becomes 
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while gauge fixing Lagrangian 
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when auxiliary fields Ca are introduced. In the above χ 
and χ* are ghost fields and4) 
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It turns out that Mab for the axial gauge and the FS 
gauge are independence of gauge fields. Accordingly, 
the functional integration in the right hand side of (34) 
results in a number and therefore the functional ∆[A] 
can be absorbed into the normalization factor of the 
corresponding generating functional; in other word, 
the ghost fields can be discarded from the theory. We 
say that the axial and the FS gauge are ghost-free 
gauges. The Lorenz gauge, on the other hand, is not a 
ghost-free gauge because the corresponding Mab is 
gauge field dependent. Studying the first line of the 
above equation one can group the set of gauge 
conditions of the form fµAµ=0 into two: set of ghost-
free gauges and set of non ghost-free gauges. The 
former is related to any fµ that does not contain 
derivatives while fµ  in the later does contain 
derivatives. Please note that the ghost-free property of 
the Abelian theory is understood as due to Cab

c=0. 

4. Field Equations and Propagators 

Consider the Lagrangian of the Abelian gauge 
field, the Maxwell field, without fixing a gauge: 

µ
µ
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The Euler-Lagrange equations give the 
inhomogeneous Maxwell equations (gµν is the metric 
in Minkowski space): 
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These equations are identical to the equations (12). 
Since the operator in the left hand side has no inverse 
we must modify it by adding a term in such a way that 
the modified operator is not singular. This 
modification is equivalent to adding a gauge fixing 
term in the Lagrangian.  Inserting the general gauge 
fixing Lagrangian (35) we have 
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with the corresponding field equations 
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The solutions are of the forms 
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In the above the terms )()0( xAµ obey the 

homogeneous equations and ∂2=∂µ∂µ. It turns out that 
the Green’s functions or the free propagators are 
related to the inverse of the operators inside the [] 
brackets, say them as G-1

µν, in the (41): 
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After replacing fµ with the values in the corresponding 
gauges and using the identity we have4) 
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Note that in non-Abelian case the free 
propagators have the forms Gabµν=δabGµν with Gµν 

equals the above equation. In addition, if the gauge 
fixing Lagrangian (36) is considered, instead of (35), 
we have additional components Gµ4 where the index 4 
is related to the auxiliary field. These components, 
however, do not contribute to scattering.  

Finally one concludes that the propagators in 
the ghost-free gauge above are must more complicated 
than that in the Lorenz gauge. This leads to 
complexities in perturbation theory calculations. This 
is the drawback of the ghost-free gauges.  

Some properties of the gauge propagators are, 
among others,: (1) they have {µ↔ν, x↔y} 
symmetrical properties, (2) they fulfill the condition 
fµGµν=0, and (3) Lorenz and axial gauge propagators 
are translation invariant, but not for the FS gauge 
propagator.   

5. Symmetries and Identities 

Consider the Lagrangian of matter fields and 
gauge fields 

ψγψ µ
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The above Lagrangian describes a system of 
quarks and gluons and it also represents 
electrodynamics when we reduce to Abelian case. It is 
invariant under the infinitesimal local gauge 
transformations  
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(The first and third equations are identical to (1) and 
(5)). If we fix the gauge by adding a gauge fixing 
Lagrangian Lgf (36), however, the new Lagrangian (L0 
+Lgf) has no gauge symmetry. This is because the 
gauge fixing Lagrangian is not invariant under the 
gauge transformation. If we also add to the 
Lagrangian, the Faddeev-Popov ghost field 
contribution of the form 

)(),()(* yyxMxdy baba
FP χχ∫−=L  (48) 

the more complete Lagrangian 

 FPgf LLLL ++= 0 ,  (49) 

is also not invariant under the gauge transformation. 
This means that δL0  and δLgf do not cancel to one 
another. However, there are extended gauge 
transformations, namely the BRST transformations, 
that leave the whole Lagrangian L unchanged. These 
transformations are the gauge transformations (47) 
plus the transformations for the ghost fields and the 
auxiliary fields of the forms: 
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In the above equations θ is a Grassmann 
number defined through ε=−θχ. Since ε is a real 
number (θχ)+=θ+χ+. We introduce the number n so 
that the analysis can be used for either form of Lgf  (eq. 
(35) or (36)). n=0 when Ca are auxiliary fields and n=1 
when Ca=−(fµAaµ)/λ. Note that in Abelian case the 
BRST transformations reduce to the gauge 
transformations. 

The invariant Lagrangian gives a consequence 
to the corresponding generating functional. In 
electrodynamics the generating functional is of the 
form 
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with L0 equals (46) but without the internal index a, 
the functional ∆[A] is just a number, while Ls, the 
external source term, is given by ( aa KJ and,,, ηηµ are 
external sources corresponding to the fields, 
respectively, aa CA and,,, ψψµ ): 
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(The index a is also irrelevant in this case) Since Z is 
invariant under any field transformations, δZ=0, the 
gauge invariance of L0 leads to the Ward-Takahashi 
identity 
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In term of effective action ],,,[ aa CA ψψµΓ  the 
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The +(−) sign in the first term is associated 
with the Lorenz gauge (axial and FS gauges). It turns 
out that the first term is the only term that depends on 
the gauge choice. Since this term only depends on 
unphysical auxiliary field or only linear in gauge field 
(when C is not auxiliary field) it does not contribute to 
n-point functions. Thus different gauge choices do not 
lead to different physical meaning. For example, the 
identity implies orthogonality of photon self-energy 
for all gauge choices. 

In the case of non-Abelian gauge, both the 
functional ∆[A] and δA depend on gauge fields and 
this gauge dependence leads to complexities of the so-
called Slavnov-Taylor identity: 
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⎥
⎥
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⎤
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⎢
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⎣

⎡
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⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛+ −∫

Z
ee

Ji
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M
Ji

DJdy
Ki

cabcb
a

ηδ
δη

δη
δη

δ
δ

δ
δ

δ
δ

µ
µ

. (55) 

The complexities, due to the appearance of M, 
unable one to write in a simpler form like the Ward-
Takahashi identity. This problem leads one to consider 
the BRST symmetry for the non-Abelian case. 

Identities related to the BRST transformations 
can be obtained by inserting (34) into (51) giving 

[ ]

∫
∫

+++

∆=

=

][exp{

][*][

]*,,,,,

0 sFPgfdxi

ACAD

KJZ

LLLL

χχψψ

ξξηη

 (56) 

where Ls should contain ghost sources ξ and ξ*: 

.** aaaaaa

aa
s

CK

AJ

χξξχ

ψηηψµ
µ

+++

++=L
 (57) 

BSRT invariance of (L0 +Lgf +LFP) gives rise to the 
BRST identity 

.0* =⎥⎦
⎤−+−

⎢⎣
⎡ +∫

ωδ
δηη

δω
δ

δ
δξ

δ
δξ

δ
δ

µ
µ

ZZ
v
Z

u
ZJ

K
Zdx

a
a

a
aa

a
 (58) 

In term of ],,*,,,,,[ ωωχχψψµ aa CAΓ , the effective 
action, the identity has the form 
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⎥
⎥
⎦
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ΓΓ
+

⎢
⎢
⎣

⎡

⎟
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⎞

⎜
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⎝
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δ
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δ

δ
δ

δ
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µ
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aa

a
aa

v

Cf
Au

dx

 (59) 

In obtaining the above identity we should 
introduce new anti-commuting source uaµ and 
commuting sources va, ω, and ϖ of the composite 
fields, respectively, Dabχb, -gCabcχbχc/2, aatig χψ− , 
and igχataψ. Similar to the previous identities, gauge 
choice dependence of the BRST identity is given by 
fµC term that does not contribute to physical 
processes. Note that the BRST identity reduces to the 
Ward-Takahashi identity when we shift to the Abelian 
case.  

In order to look at the dependence of the 
effective action with respect to the gauge parameter λ 
one introduces the extended BRST transformations, 
i.e. the BRST transformations plus additional 
transformations of the form6) 

δλ=θγ,   δγ=0. (60) 
In the above, γ is a Grassmann variable, γ2=0, 

defined through adding to the Lagrangian a term of the 
form γχ*C/2 that does not contribute to the dynamics 
of the physical system (The appearance of ghost fields 
in the additional transformation of course leads to 
changes of the dynamics of the ghost fields.): 

aa
FPgf C*2

1
0 γχ+++= LLLL . (61) 

The new transformation shows that the gauge 
parameter λ is considered as a variable. Taking into 
account to the extended BRST transformations one 
ends up with the so-called Nielsen identity7): 



IJP Vol. 19 No. 4, 2008 7 
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aa
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Cf
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dx

 (62) 

It turns out that the difference between the 
BRST and the Nielsen identities is given by the last 
two terms of the above equation. The last term 
describes how the effective action depends on the 
gauge parameter.   

6. Conclusions 

We have shown that freedom of choosing a 
gauge leads to the development of gauge theory more 
interesting. In electromagnetism we have, for the same 
electric and magnetic field, an infinite number of 
potential configurations. Gauge function that relates 
the Lorenz and the Coulomb gauge is explicitly given. 
Through the inversion formulae such a gauge function 
that relates the Lorenz and the FS gauge may also be 
obtained. The inversion formula is peculiar for the FS 
gauge and it interests some physicists to work with. 
Similarity between the Aµ-Fµν relationship in gauge 
theory and Γµ-Rµν relationship in general relativity 
leads to an inversion formula version of general 
relativity. This enables one to derive the FS 
Newtonian gravitational potential.  

Various gauge choices can be grouped 
according to some certain properties. Here we have 
ghost-free gauges and non ghost-free gauges. Ghost-
free gauges are gauge fixing of the form f⋅A=0 with f 
does not contain differential operators. In ghost-free 
gauges, no ghost lines are necessary in Feynman rules, 
thus reducing the number of Feynman diagrams. 

However, we must pay the reduction of the diagrams 
by complexity of the propagators, giving difficulties in 
perturbation calculations. FS gauge proves these 
difficulties4).  

Field transformation invariant of some part of 
the Lagrangian of the corresponding physical system 
leads to some identities, the Ward-Takahashi, 
Slavnov-Taylor, BRST, and the Nielsen identities. The 
identities are of the form of functional differentiation 
of the effective action with respect to the fields. The 
identities vary with gauge choices, but give the same 
physical consequences.  
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