
Indonesian Journal of Physics 
Vol 18 No. 2, April 2007 
 

47 

Performance Analysis of 2D and 3D Fluid Flow Modelling  
Using Lattice Boltzmann Method 

Fourier Dzar Eljabbar Latief and Umar Fauzi 
Physics of Complex System Divison, 

Faculty of Mathematic and Natural Sciences 
Institut Teknologi Bandung, Indonesia 

e-mail: dzareljabbar@students.itb.ac.id; umarf@fi.itb.ac.id 

Abstract 

Several studies have been conducted to observe properties of fluid flow in materials using the Lattice Boltzman 
Method (LBM). There are two widely used lattice model, the D2Q9 for the 2D simulation, and the D3Q19 for the 
3D simulation. Our particular interest is to study the velocity map both using the 2D and the 3D simulation, using 
the same object.  

The aim of this study is to evaluate effectiveness and efficiency of both methods. In our simulation, the velocity 
profile between the 2D and 3D models differs greatly (mean error 30.4%) if the object has complex lateral structure 
(the shape along the z-axes differs greatly), while for the less complex object, the profile has only 1.4% of mean 
error. The computing time for the 3D model took 13 times longer than the simulation of the 2D model. The result 
from the comparison of both methods concludes that the simplification of fluid flow simulation of 3D objects into 
2D objects should be taken carefully, for in some cases, the simplification is not quite appropriate. 
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1. Introduction 

In recent years, Lattice Boltzmann Method 
(LBM) has become increasingly popular due to their 
ease of implementation, extensibility, and 
computational efficiency. Consequently, Lattice 
Boltzmann has become a viable alternative to 
traditional Computational Fluid Dynamic (CFD) 
methods. The Lattice Boltzmann (LB) approach, has 
been increasingly used in various engineering 
applications in modeling the flow of both single and 
multi-component fluids1-6). 

The main advantages of the Lattice Boltzmann 
Method include easy implementation of boundary 
conditions and computational efficiency by allowing 
parallel computing. The method also accommodates 
boundary conditions such as a pressure drop across 
the interface between two fluids and wetting effects at 
the fluid-solid interface7). It has proven to be very 
accurate in simulating isothermal, incompressible flow 
at low Reynolds numbers5). 

2. Lattice Boltzmann Method in Modeling Fluid 
Flow 

Among various techniques in fluid flow 
modeling, Lattice Boltzmann Method has been 
gaining wide acceptance due to its ease of 
implementation of boundary conditions and numerical 
stability in wide variety of flow conditions with 
various Reynolds numbers. It has evolved from the 
Lattice Gas Automata (LGA)8). Various difficulties 
experienced in LGA were overcome by the 
introduction of the LBM. It was first introduced by 
McNamara and Zanetti9) to eliminate the statistical 

noise in the LGA. Since then, it has been implemented 
and improved by various researchers in variety of 
disciplines. Early applications of the Lattice 
Boltzmann Method to porous media largely focused 
on the feasibility of the method. Succi et al.5) used 
LBM to simulate flow through random pack of blocks 
and demonstrated the adherence to Darcy’s law. 
Various researchers10-13) improved the LBM by 
introducing a variety of new boundary conditions for 
the solid boundaries.  

Maier et al.14) implemented a three dimensional 
LB model (D3Q19) to simulate flow through bead 
packs and compared with the Kozeny-Carman 
prediction for the sphere packing. Kim15) utilized a 
two dimensional (D2Q9) LB model to simulate flow 
through rock fractures and compared with the 
analytical equations that assumes the rock fracture 
composed of set of parallel plates. Martys et al.16) 
successfully applied LBM to simulate a multiphase 
flow through Fontainebleau 7 sandstone. Hornero et 
al.17) measured the performance of a two dimensional 
LB model for simulating soil flow in a simple erosion 
model and compared the results to those predicted by 
an analytical solution. Tang et al.,18) successfully 
implemented LBM to simulate gas flow through 
microchannels. 

Flow through fibrous materials such as papers, 
random fiber webs and woven fabrics have been the 
interest of researchers using LBM. Koponen et al.,19) 
modeled the hydraulic conductivity of three-
dimensional random fiber webs using LBM and found 
a good agreement with the experimental 
measurements. Filippova20) used a three-dimensional 
LBM to model gas-particle flow through filters and 
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successfully simulated filtration phenomenon. 
Clague21) modeled hydraulic conductivity of bounded 
and unbounded fibrous media using the LBM.  

In the LBM, fluid is considered as a collection 
of particles that are represented by a particle velocity 
distribution function at each discrete lattice node. 
Particles collide with each other and properties 
associated with the lattice notes are updated at discrete 
time steps. The rules governing the collisions are 
designed such that the time-average motion of the 
particles is consistent with the Navier-Stokes 
equations. In LBM, the computation of each node at 
every time step depends solely on the properties of 
itself and the neighboring nodes at the previous time 
step.  

Various LB models exist for numerical 
solution of various fluid flow scenarios, where each 
model has different way of characterizing microscopic 
movement of the fluid particles. The LB models are 
usually denoted as DxQy where x and y corresponds 
to the number of dimensions and number of 
microscopic velocity directions (ei), respectively 
(Table 1). For example, D2Q9 represents a two-
dimensional geometry with nine microscopic velocity 
directions. The following sub chapter will give 
general picture of the lattice D2Q9 and D3Q19 LB 
models which were implemented in this study. 

These models obey the distributions function 
stated as in Kutay22) : 
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where eq
iF is the equilibrium distribution function, ρ 

is the density, u is the macroscopic velocity of the 
node. The relaxation time relates to viscosity of fluid 
(ν ) as follows: 
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The macroscopic properties, density and velocity, of 
the nodes are calculated using the following relations: 
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where ρ and u are the macroscopic density and 
velocity of the fluid each node of lattice. 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Properties of various LB models 
 

 
 
Note: Weight factors for; (1) rest particle, (2) face-
connected neighbors, (3) edge-connected neighbors. 

2.1 The 2D fluid flow modeling  

A very common lattice for 2D isothermal fluids 
is the D2Q9 lattice that connects the lattice sites only 
with their nearest neighbors. The D2Q9 model shown 
in Figure 1 is a two-dimensional model (D2) with nine 
possible velocity vectors (Q9). At a given time step, 
the center particle may travel to any of the eight 
surrounding nodes, or it may remain stationary. Thus, 
a velocity vector equal to zero constitutes the ninth 
possible vector. Visibly, the space of velocities has 
obviously been reduced dramatically, as it is left with 
only 9 elements. It can however be shown that this is 
sufficient for several purposes. The number of lattice 
velocities must in general be chosen in such a way as 
to respect some specific isotropy relations, so that the 
dynamics of the fluid is asymptotically isotropic on 
high resolution lattices. 

 
 
Figure 1. Lattice model for D2Q9. 
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2.2 The 3D fluid flow modeling  

As has been explained before, Lattice 
Boltzmann can also be used to simulate three-
dimensional flows with models such as the D3Q19, 
which has motion in three dimensions and 19 
associated velocity vectors. 

 
 
Figure 2. Lattice model for D3Q19. 

2.3 Velocity map comparison between 2D and 3D 

In many real cases, fluid flow in 3D objects 
can often be simplified in to the 2D projection along 
the interested plane. But in some other certain cases, 
the result shows that such simplification is not 
appropriate to be taken. Here we present examples on 
cases which such simplification should not be made.  

First we used a simple model of 3D object 
obstacle as can be seen in Figure 3. The simulation of 
the fluid flow is then made using the D3Q19 model to 
observe the velocity pattern. 

 

 
Figure 3. Three dimensional obstacles that are applied 
to map the velocity pattern. 
 

The result of this simulation is shown in Figure 
4. The slice on the X-Y plane at Z = 7 is then 

observed. The 3D obstacles from Figure 3 are sliced at 
the same Z point. The results of these slices are used 
as 2D obstacles model to simulate the fluid flow using 
the D2Q9 lattice model. In both lattice models 
(D3Q19, D2Q9) the fluid flow directed along the X-Y 
plane, parallel to the Y axes. For this comparison, we 
calculated mean errors based on the following 
formula: 
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Figure 4. Slice of the velocity pattern from each of the 
3D models. 
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The result from the first 3D model slices is 
shown in Figure 5, as we can see, the pattern is quite 
different. We calculated the mean error from the 
difference and the result is + 30.4%.  

 

 
 
Figure 5. Result from the first model. 
 
The result from the second 3D model slices can be 
seen in Figure 6. The pattern is quite different. We 
calculated the mean error from the difference and the 
result is + 9.2%.  

 
 
Figure 6. Result from the second model.  
 
The result from the third 3D model slices can be seen 
in Figure 7. We calculated the mean error from the 
difference and the result is + 1.4%.  
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Figure 7. Result from the third model.  
 
As we can see from the results, the more similar the 
obstacles structure (in perpendicular to fluid flow 
direction) the smaller the error is. 

2.4 Comparison of computing time 

One of many interesting issue in CFD using 
LBM is the computing time. For large-scale objects, 
the difference of the computing time between the 2D 
and the 3D is very significant. We calculate the 
computing time using a larger scale (120x60x5 pixel) 
complex model (Figure 8).  

 
Figure 8. Model used to calculate the computing time.  
 

In the computing time for the 2D model is 
25.9380 seconds. While computing time for the 3D 
model is 330.9840 seconds, which is more than 13 
times longer. The algorithm was executed in an AMD 
Athlon™ 64 X2 Dual Core Processor 4600+ 2.41 
GHz, 2GB of RAM using Matlab v.7. 

The 3D algorithm has a serious computing time 
issue. Fortunately, this disadvantage might be 
overcome by modifying the algorithm. Various 
modifications have been conducted by many 
researches. Wellein, et al.,23) utilized a so-called 
memory hierarchy to optimize the 3D LBM.  

3. Discussion 

In the comparisons above, the slices were taken 
in parallel with the flow of the fluid. As we observed, 
the 2D and 3D maps are much different when the 
lateral (direction along the z-axes) structure of the 
obstacle (pore structure) also differs much. In the first 
model, the third velocity component of the 3D fluid 
flow (along the z-axes) has significant contribution to 
overall velocity scalar value (map). While in the 
second and the third model, the contribution 
decreases, as the lateral structure become more 
similar.  

4. Conclusions 

From the discussion above, we could conclude 
that the 2D lattice model could not map the velocity 
profile of three dimensional object appropriately in 
the case that the lateral structure varies much and the 
fluid flow is along the horizontal plane. Thus, in order 
to obtain precise model of the fluid flow in three 
dimensional complex structure objects (e.g., 
hydrocarbon reservoir), it is important to simulate it 
using the 3D lattice model approach. Such 
simplification from 3D to 2D is appropriate in cases 
where the obstacle structure does not vary in such 
complex way, or in some cases that such variations 
are negligible, for example, in case of river flow 
velocity mapping. In this perspective, the 
simplification can reduce the large computing time 
performed by the 3D model. 
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