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Abstract

An analytic expression of transmittance based on the Airy wavefunctions approach has been derived for an electron

through an anisotropic heterostructure with an applied voltage to the barrier of the heterostructure.

The

Si(110)|SiysGeys|Si(110) heterostructure was used to examine the analytic expression. In order to evaluate the Airy
wavefunctions approach, the transfer matrix method, which is a method widely applied for various applications, was
employed as a reference. It was found that the transmittance calculated by the Airy wavefunctions approach fits perfectly
that obtained by the transfer matrix method. The exponential wavefunctions approach in obtaining the transmittance was
also evaluated. The transmittance obtained by the exponential wavefunctions is always lower than the transfer matrix
method-based transmittance. As the electron total energy or applied voltage increases, the difference between the
exponential wavefunctions- and transfer matrix method-based transmittances increases. Thus, the Airy wavefunctions
approach improves the exponential wavefunctions approach to calculate the electron direct transmittance.

Keywords: Airy wavefunction, Anisotropic heterostructure, Direct tunneling, Exponential wavefunction, Transfer matrix

method, Transmittance
1. Introduction

Tunneling phenomenon through a potential barrier
is still of interest in the study of quantum transport in high
speed heterostructure  devices. Paranjape”  derived
transmission coefficient of an electron in an isotropic
heterostructure without applying a bias voltage". Kim and
Lee” calculated transmission coefficient of an electron
tunneling through an anisotropic heterostructure with zero
bias voltage by solving the effective-mass equation
including off-diagonal effective-mass tensor elements™”.
Khairurrijal, et al. derived electron direct tunneling time
through a trapezoidal barrier, which is due to a bias
voltage, grown on isotropic materials by employing the
Wigner phase time”. Very recently, we have reported
electron direct transmittance in an anisotropic
heterostructure with applying a bias voltage by following
the method in Ref. 4 in which the exponential
wavefunctions (EWFs) are used>®. Unfortunately, when
we applied the method to obtain the transmittance for the
Fowler-Nordheim tunneling case, then we found that the
transmittance is higher than one, which indicates the
violation of the energy conservation law and implies that
the electron direct transmittances previously calculated as
reported in Refs. 5 and 6 are inaccurate. This is due to the
use of approximate solutions of the Schrodinger equation
with a linear potential profile. On the other hand,
Khairurrijal, ef al.” calculated field emission current for
electrons confined in an isotropic silicon subsurface
quantum well by employing generalized Airy
wavefunctions, which are exact solutions of the
Schrédinger equation with an arbitrary potential profile”.

In this paper, we present a method in calculating
the electron direct transmittance in an anisotropic
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heterostructure with a bias voltage based on the Airy
wavefunctions (AWFs). An analytic expression of the
direct transmittance is derived. As a reference to evaluate
the present calculation method, we use the transfer matrix
method (TMM) which is widely applied in various
problems®'?. The calculated results are discussed in
details. It will be shown that the present method based on
the AWFs improves the calculated direct transmittances
as compared to those obtained by the EWFs-based
method.

2. Theoretical Model

The Hamiltonian for general anisotropic materials
is?
1

2m

H=—-—p a(np+V(r), (1)

[

where m, is the mass of free electron, p is the momentum
vector, (1/m,)a is the inverse effective-mass tensor and
V(r) is the potential energy with the potential profile as
given in Fig. 1 is expressed as

0 for  z<0
eV,
V(z)= Q)—TZ for O0<z<d 2)
—eV, for z=d.

Here, the barrier width and height are d and @,
respectively. The voltage applied to the barrier is 7, with
e is the electronic charge. The electron is incident from
region I to the potential barrier (region II), in which the
material of the region I is the same as that of the region
111
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Figure 1. The potential profiles of a heterostructure (a)
without a bias voltage and (b) with the application of a
voltage to the barrier.

The effective mass of the electron and potential are
position dependent only on the z direction. The wave
function of the effective-mass equation with the
Hamiltonian, as shown in Eq. (1), is given as®

w(r)=p(z)exp(-iyz)exp(i(k,x+k,»)),  (3)
and

ko, +ko,
y=— @

aZZ

is the wave number parallel to the interface.

By employing the separation variable to Eq. (1), it
is found that ¢(z) satisfies the one dimensional
Schrodinger-like equation

n* o%p(z
e ARV () = Epa) . (9
4

zz,l
2m,

where 7 is the reduced Planck constant and the subscript /
in a,,; denotes each region in Fig. 1. Here

2

2m

E . =E- > Bykik; . (6)
o ijetey)
is the electron energy at z direction, where
72
E= ) 2= Giikik; @)
i,jetx.y,z}

is the total energy,

aizazi
By =0 > 3

zz

and a; is the effective mass tensor element.
2.1 The Airy Wavefunctions (AWFs) Approach

The time-independent electron wave function in
each region is therefore

\Pl (Z) _ (Aeiklz + Be*ik]z)e—(i;/]z)e—(ikxxﬂk‘,y) ;

forz<0, 9)
v (2) = (CAI(E(E)+ DBi(E(z e 72t
for 0 <z <d, (10)

P, (2) = Fe2e (7)o ") gorz>d. (11)

The wave number k; and k; are expressed, respectively, as
follows

b
2m E. 1
ky =i —%~=—% 12
1 { hz azz,l} ( )

and

P!
k3={2mo(Ez+eVb) 11} . (13)

n? a

zz,

The argument §(z) of the Airy functions Ai and Bi is

2m 1)
E(z) = (hzoeF - J

m,2
O-E. n* 1
it B =Bk
i,je(x,y)
(14)

By applying the boundary conditions at z =0 and z = d,
which are expressed as follows:

pi(z=0") =y, (z=0"), (15a)
1 d d d
_|:azx1 ﬂ-i_azyl ﬂ+azzl ﬂj|
o Todz T odz Todz |,
:L[d zdl//z Zdllfz 2dV/2}
, A 7y dz |,
(15b)
Va(z=d ) =z =d"), (15¢)
d d d
L %) v +azy 2 v +a;, V2
m, T odz Todz Todz |,

d d d
:L Aol v +azy1 Y ta;, Vs 7(15d)
m T odz T odz Codz |

o

we will obtain the transmission amplitude 7, from Egs.
(9) - (11), which can be written as

T,== (16)
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F_ 2iky a1 py a7
A % 7
(2:;0 aizeFJ 3Pz +i(azzlk1p3 +azz1k3P4)+(2;;0 O‘ZZEFJ 3k1k2azzlazzlp5
where
P = Ai(f(d))Bi‘(f(d))—Bi(é(d))Ai‘(.f(d)) (18) The transmission coefficient is given by
A 1
s = AT BIE00) - BT E(0) 19) T @)

ps = Ai(£(0)Bi'(&(d))-Bi(£(0)Ai(£(d)) (20)

P4 = Ai(&(@))Bi'(£(0))- Bi(£(a))Ai'(£(0) 1)

ps = Ai(¢(d))Bi(&(0))- Bi(£(4))Ai(£(0)).  (22)
2.2 The Transfer Matrix Method (TMM)

The TMM is based on dividing the domain of the
solution into N segments as shown in Fig. 2 in which each
segment of the potential energy is assumed to be constant.
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Fig. 2. The potential profile of a heterostructure is divided
into N segments.

The time-independent electron wave function in
each region is

Vi (Z) = (Aleiklz + Bleiiklz %7i7126_i(k~‘x+kyy) (23)
\Vj(z) = (Ajek/z n Bje—k/z }—iyZze—i(k\.Hk‘,y) (24)

\VN(Z) _ ANeikSZ€_i}/lz€_i(k)(x+k‘vy), (25)
where the wave number £; is given in Eq. (26)
_2my 1

(@ —er)—ﬂk2
n’ oa !

a

2
kj

zz,2 2z,2

2 Bya Py 2dkik;

22,2 i, je(x,)

| (26)

By using the TMM we can easily get the following matrix
a2

(A ) %)

where a;;, a2, a1, and a,, are the matrix elements.

@7

The transmittance T is easily obtained by employing the
following expressions

T=1,T, (29)

where T, is given by Egs. (16) or (18) for the AWFs
approach or the TMM, respectively.

3. Calculated Results and Discussion

Following the model given in Fig.l, a strained
SigsGegs potential barrier is on Si (110) so that the
structure becomes Si(110)|SigsGes|Si(110). The barrier
width d and the band discontinuity ® were taken as 5 nm
and 216 meV, respectively”. There are four equivalent
valleys in the conduction bands of Si (110) and strained
SigsGegs. Since the effective mass tensor elements of
these four valleys are not the same, there are two groups
of valleys in the Si (110) and SiysGeys as shown in
Table 1?. We calculated electron direct transmittances by
applying the EWFs and AWFs approaches as well as the
TMM. For the simplicity in the calculation we fixed ¢ to
/2.

Tablel. Tensor elements (a;) used in the numerical
calculation.

Valley Region I and IIT Region 1II (SiysGegs)
(Si[110])
1 526 0 0 645 0 0
0 314 212 0 456 274
0 212 3.14 0 274 456
2 526 0 0 645 0 0
0 314 -2.12 0 456 -2.74
0 -212 3.14 0 -2.74 4.56

The transmittance as a function of the incident
angle for an electron with the total energy of 75 meV and
applied voltage of 50 mV is shown in Fig. 3. We see that
the transmittance obtained under the AWFs approach is
the same as that calculated by the TMM but the EWF
approach results in lower transmittance as compared to
the TMM. The deviation of the transmittance calculated
by the EWFs approach becomes significantly observed
for small incident angles.
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Figure 3. The transmittance for the incident angle varying

from -90° to 90° with total energy of 75 meV and applied
voltage of 50 mV.

Figure 4 gives the transmittance with the total
energy of 150 meV and applied voltage of 50 mV. The
maximum transmittances are still at the normal incidence
and higher than those for the total energy 75 meV. Again,
we see that the transmittance obtained under the AWFs
approach replicates perfectly that calculated by the TMM.
Significant difference in the transmittances occurs at
small incident angles. As the applied voltage is increased
for constant total energy, the difference in the
transmittances becomes higher as clearly seen by
comparing Figs. 3 and 4.
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Figure 4. The transmittance for the incident angle varying

from -90° to 90° with total energy of 150 meV and
applied voltage of 50 mV.
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Figure 5 The transmittance for the incident angle varying

from -90° to 90° with total energy of 25 meV and applied
voltage of 100 mV.

Figures 5 and 6 depict the transmittances for the
applied voltage of 100 mV and 150 mV, respectively.
Again, we can see that the transmittances calculated by
the AWFs and the TMM approaches fit very well. The
discrepancy between the transmittances obtained by the
EWFs and the AWFs approaches occurs at all incident
angles. It can also be seen that the difference in the
transmittances increases with increasing the applied
voltage.
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Figure 6. The transmittance for the incident angle varying
from -90° to 90° with total energy of 25 meV with
applied voltage of 150 mV.

Considering the valleys, we find from Figs. 3 to 6
that the transmittances for the valley 1 are the mirror of
those for the valley 2. We also find that the transmittance
is not symmetric with the change of sign of incident angle
(6—-0) for all valleys. This confirms the anisotropic
properties of the materials®.

Conclusion

We have derived an analytical expression of
transmittance of electron through a nanometer-thick
trapezoidal barrier grown on anisotropic materials based
on the Airy wavefunctions (AWFs) approach. The
calculation was applied to the Si(110)[SipsGeos/Si(110)
heterostructure. The calculated transmittance was
compared to that obtained by the transfer matrix method
(TMM), which is a method widely used for various
applications. It was found that the AWFs-based
transmittance reproduces perfectly the TMM-based one.
The exponential wavefunctions (EWFs) approach in
calculating the transmittance was also evaluated. The
EWFs-based transmittance is always lower than that
obtained by the TMM. The difference between the EWFs-
and TMM-based transmittances increases with the
increase of electron total energy or applied voltage.
Therefore, the AWFs approach improves the EWFs
approach in obtaining electron direct transmittance.
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