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Abstract 

An analytic expression of transmittance based on the Airy wavefunctions approach has been derived for an electron 
through an anisotropic heterostructure with an applied voltage to the barrier of the heterostructure. The 
Si(110)|Si0.5Ge0.5|Si(110) heterostructure was used to examine the analytic expression. In order to evaluate the Airy 
wavefunctions approach, the transfer matrix method, which is a method widely applied for various applications, was 
employed as a reference. It was found that the transmittance calculated by the Airy wavefunctions approach fits perfectly 
that obtained by the transfer matrix method. The exponential wavefunctions approach in obtaining the transmittance was 
also evaluated. The transmittance obtained by the exponential wavefunctions is always lower than the transfer matrix 
method-based transmittance. As the electron total energy or applied voltage increases, the difference between the 
exponential wavefunctions- and transfer matrix method-based transmittances increases. Thus, the Airy wavefunctions 
approach improves the exponential wavefunctions approach to calculate the electron direct transmittance. 

Keywords: Airy wavefunction, Anisotropic heterostructure, Direct tunneling, Exponential wavefunction, Transfer matrix 
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1. Introduction 

Tunneling phenomenon through a potential barrier 
is still of interest in the study of quantum transport in high 
speed heterostructure devices. Paranjape1) derived 
transmission coefficient of an electron in an isotropic 
heterostructure without applying a bias voltage1). Kim and 
Lee2) calculated transmission coefficient of an electron 
tunneling through an anisotropic heterostructure with zero 
bias voltage by solving the effective-mass equation 
including off-diagonal effective-mass tensor elements2,3). 
Khairurrijal, et al. derived electron direct tunneling time 
through a trapezoidal barrier, which is due to a bias 
voltage, grown on isotropic materials by employing the 
Wigner phase time4). Very recently, we have reported 
electron direct transmittance in an anisotropic 
heterostructure with applying a bias voltage by following 
the method in Ref. 4 in which the exponential 
wavefunctions (EWFs) are used5,6). Unfortunately, when 
we applied the method to obtain the transmittance for the 
Fowler-Nordheim tunneling case, then we found that the 
transmittance is higher than one, which indicates the 
violation of the energy conservation law and implies that 
the electron direct transmittances previously calculated as 
reported in Refs. 5 and 6 are inaccurate. This is due to the 
use of approximate solutions of the Schrödinger equation 
with a linear potential profile. On the other hand, 
Khairurrijal, et al.7) calculated field emission current for 
electrons confined in an isotropic silicon subsurface 
quantum well by employing generalized Airy 
wavefunctions, which are exact solutions of the 
Schrödinger equation with an arbitrary potential profile7).  

In this paper, we present a method in calculating 
the electron direct transmittance in an anisotropic 

heterostructure with a bias voltage based on the Airy 
wavefunctions (AWFs). An analytic expression of the 
direct transmittance is derived. As a reference to evaluate 
the present calculation method, we use the transfer matrix 
method (TMM) which is widely applied in various 
problems8-14). The calculated results are discussed in 
details. It will be shown that the present method based on 
the AWFs improves the calculated direct transmittances 
as compared to those obtained by the EWFs-based 
method. 

2. Theoretical Model 

The Hamiltonian for general anisotropic materials 
is2) 
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where mo is the mass of free electron, p is the momentum 
vector, (1/mo)α is the inverse effective-mass tensor and 
V(r) is the potential energy with the potential profile as 
given in Fig. 1 is expressed as 
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Here, the barrier width and height are d and Φ, 
respectively. The voltage applied to the barrier is Vb with 
e is the electronic charge. The electron is incident from 
region I to the potential barrier (region II), in which the 
material of the region I is the same as that of the region 
III.  
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Figure 1. The potential profiles of a heterostructure (a) 
without a bias voltage and (b) with the application of a 
voltage to the barrier. 
 

The effective mass of the electron and potential are 
position dependent only on the z direction. The wave 
function of the effective-mass equation with the 
Hamiltonian, as shown in Eq. (1), is given as2) 
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and 
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is the wave number parallel to the interface. 
By employing the separation variable to Eq. (1), it 

is found that φ(z) satisfies the one dimensional 
Schrödinger-like equation 
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where ħ is the reduced Planck constant and the subscript l 
in αzz,l denotes each region in Fig. 1. Here 
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is the electron energy at z direction, where 
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and αij is the effective mass tensor element. 

2.1 The Airy Wavefunctions (AWFs) Approach 

The time-independent electron wave function in 
each region is therefore 
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The wave number k1 and k3 are expressed, respectively, as 
follows 
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The argument ( )zξ  of the Airy functions Ai and Bi is  
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 (14) 
By applying the boundary conditions at z = 0 and z = d, 
which are expressed as follows3): 
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we will obtain the transmission amplitude Ta from Eqs. 
(9) - (11), which can be written as 

A
FTa = . (16) 
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where 
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2.2 The Transfer Matrix Method (TMM) 

The TMM is based on dividing the domain of the 
solution into N segments as shown in Fig. 2 in which each 
segment of the potential energy is assumed to be constant. 
 

 
Fig. 2. The potential profile of a heterostructure is divided 
into N segments. 
 

The time-independent electron wave function in 
each region is 
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where the wave number kj is given in Eq. (26) 
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By using the TMM we can easily get the following matrix 
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where a11, a12, a21, and a22 are the matrix elements. 
 
 
 

 
The transmission coefficient is given by 
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The transmittance T is easily obtained by employing the 
following expressions 

T =Ta
*Ta, (29) 

where Ta is given by Eqs. (16) or (18) for the AWFs 
approach or the TMM, respectively. 

3. Calculated Results and Discussion 

Following the model given in Fig.1, a strained 
Si0.5Ge0.5 potential barrier is on Si (110) so that the 
structure becomes Si(110)|Si0.5Ge0.5|Si(110). The barrier 
width d and the band discontinuity Φ were taken as 5 nm 
and 216 meV, respectively2). There are four equivalent 
valleys in the conduction bands of Si (110) and strained 
Si0.5Ge0.5. Since the effective mass tensor elements of 
these four valleys are not the same, there are two groups 
of valleys in the Si (110) and Si0.5Ge0.5 as shown in  
Table 12). We calculated electron direct transmittances by 
applying the EWFs and AWFs approaches as well as the 
TMM. For the simplicity in the calculation we fixed φ to 
π/2.  

 

Table1. Tensor elements (αij) used in the numerical 
calculation. 
 

Valley Region I and III 
(Si [110]) 

Region  II (Si0,5Ge0,5) 

1 5.26      0           0 
0      3.14     2.12 
0      2.12     3.14 

6.45      0           0 
0      4.56     2.74 
0      2.74     4.56 

2 5.26      0           0 
0      3.14     -2.12 
0      -2.12     3.14 

6.45      0           0 
0      4.56     -2.74 
0      -2.74     4.56 

 

The transmittance as a function of the incident 
angle for an electron with the total energy of 75 meV and 
applied voltage of 50 mV is shown in Fig. 3. We see that 
the transmittance obtained under the AWFs approach is 
the same as that calculated by the TMM but the EWF 
approach results in lower transmittance as compared to 
the TMM. The deviation of the transmittance calculated 
by the EWFs approach becomes significantly observed 
for small incident angles. 
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Figure 3. The transmittance for the incident angle varying 
from -90o to 90o with total energy of 75 meV and applied 
voltage of 50 mV. 
 

Figure 4 gives the transmittance with the total 
energy of 150 meV and applied voltage of 50 mV. The 
maximum transmittances are still at the normal incidence 
and higher than those for the total energy 75 meV. Again, 
we see that the transmittance obtained under the AWFs 
approach replicates perfectly that calculated by the TMM. 
Significant difference in the transmittances occurs at 
small incident angles. As the applied voltage is increased 
for constant total energy, the difference in the 
transmittances becomes higher as clearly seen by 
comparing Figs. 3 and 4. 
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Figure 4. The transmittance for the incident angle varying 
from -90o to 90o with total energy of 150 meV and 
applied voltage of 50 mV. 
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Figure 5 The transmittance for the incident angle varying 
from -90o to 90o with total energy of 25 meV and applied 
voltage of 100 mV. 
 

Figures 5 and 6 depict the transmittances for the 
applied voltage of 100 mV and 150 mV, respectively. 
Again, we can see that the transmittances calculated by 
the AWFs and the TMM approaches fit very well. The 
discrepancy between the transmittances obtained by the 
EWFs and the AWFs approaches occurs at all incident 
angles. It can also be seen that the difference in the 
transmittances increases with increasing the applied 
voltage. 
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Figure 6. The transmittance for the incident angle varying 
from -90o to 90o with total energy of  25 meV with 
applied voltage of 150 mV. 
 

Considering the valleys, we find from Figs. 3 to 6 
that the transmittances for the valley 1 are the mirror of 
those for the valley 2. We also find that the transmittance 
is not symmetric with the change of sign of incident angle 
(θ→-θ) for all valleys. This confirms the anisotropic 
properties of the materials2).  

Conclusion 

We have derived an analytical expression of 
transmittance of electron through a nanometer-thick 
trapezoidal barrier grown on anisotropic materials based 
on the Airy wavefunctions (AWFs) approach. The 
calculation was applied to the Si(110)|Si0.5Ge0.5|Si(110) 
heterostructure. The calculated transmittance was 
compared to that obtained by the transfer matrix method 
(TMM), which is a method widely used for various 
applications. It was found that the AWFs-based 
transmittance reproduces perfectly the TMM-based one. 
The exponential wavefunctions (EWFs) approach in 
calculating the transmittance was also evaluated. The 
EWFs-based transmittance is always lower than that 
obtained by the TMM. The difference between the EWFs- 
and TMM-based transmittances increases with the 
increase of electron total energy or applied voltage. 
Therefore, the AWFs approach improves the EWFs 
approach in obtaining electron direct transmittance. 
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