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Abstract  

Spin dependent tunneling through a nanometer thick square barrier based on zinc- blende structure material has a great 
deal of attention due to its potential application in spintronics devices. An analytic expression of the transmittance T of an 
electron with spin polarization has been derived by adding the Dresselhauss term to the commonly used Hamiltonian and 
solving the Schrödinger equation. Solutions of the Schrödinger equation give two states referred as the “up” or “+” and 
“down or “-” spin states. It was found that the “up” and the “down” state transmittances are asymmetric to the axis at the 
normal incidence (θ=0o). Moreover, at the normal incidence the transmittances are equal because the parallel wave 
vectors are zero and not the highest. In addition, it was also found the relation T+(θ)= T-(-θ) due to the anisotropic 
properties of heterostructure materials. 
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1. Introduction 

In recent years, many theoretical and experiment 
works on spintronics have been conducted because of the 
scientific interest in spin-dependent transport of electrons 
as well as technological applications1,2). Many authors 
have revealed that the spin-dependent transport in 
semiconductor heterostructures can be achieved by using 
ferromagnetic semiconductor materials3-6) following the 
invention of diluted magnetic semiconductor (DMS) by 
Ohno7). On the other hand, Voskoboynikov, et. al.8) 
suggested that a spin filter could be obtained from 
nonmagnetic semiconductor material due to the Rashba 
spin-orbit coupling8,9). Flatte, et. al.10,11) proposed a spin 
transistor by taking advantage of the unique 
characteristics of bulk inversion asymmetry in (110)-
oriented nonmagnetic semiconductor heterostructures. 
Perel’ et. al.12) found that electron tunneling through a 
zinc-blende semiconductor depends on spin polarization. 
Moreover, the Dresselhaus effect arising in the zinc-
blende semiconductor produces interface current 
enhancement in thin barrier case as reported by Wang et. 
al13).  

In this paper, we present the study on electron 
tunneling through a nanometer-thick zinc-blende 
semiconductor square barrier with spin consideration. By 
incorporating the Dresselhaus term to the Hamiltonian 
and solving the Schrödinger equation, we obtained an 
analytical expression of electron transmittance, which 
depends on spin orientation. We calculated the electron 
transmittance and polarization as functions of energy in 
the normal direction and incident angle. Then, the 
calculated results are discussed thoroughly.  

 

2. Theoretical Model 

The potential profile of a semiconductor 
heterostructure is shown in Fig. 1. The heterostructure is 
composed of three regions, in which the material in region 
I is the same as that in region III and the zinc-blende 
semiconductor in region II acts as a potential barrier. The 
barrier width and height are L and V0, respectively. An 
electron comes from the region I to the potential barrier 
with the initial wave propagation vector given by Eq. (1). 

zkkk z ˆˆ += ρρ
G

,  (1) 

ˆ ˆzk k k zρρ= +
G

, (1) 

where ρ̂ and ẑ are the unit vectors in parallel and normal 
directions to the interfaces between two regions, 
respectively. The incident angle θ is expressed as 

)/arctan( zkkρθ = , where kρ and kz are the momentum in 
parallel and normal directions, respectively.  

The electron behavior in the heterostructure is 
described by Schrödinger equation  

Ψ=Ψ EH ,  (2) 
where E is the electron total energy and Ψ is the electron 
wave function. The Hamiltonian H comprises H0, which 
is common for the heterostructure without consideration 
of spin14), and HD is the Dresselhaus term for taking into 
account the spin. 
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Figure 1. Potential profile of a heterostructure and 
incident electron wave vector  
 

The Dresselhaus term HD is given by12,15) 
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where γ is the Dresselhaus constant and σi with i = x, y, 
and z are the Pauli matrices. The wave number kx and ky  
are related to the wave number kρ in the xy plane so that 

ykxkk yx ˆˆ +=ρ

G
 with x̂   and ŷ  are the unit vectors in the 

xy plane. 
It can be found that the Dresselhauss term in Eq. 

(3) has the “eigen value problem” form with the eigen 
states-like  
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and the eigen values-like  
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Here, ϕ is the polar angle of the wave vector in xy plane 

ρk
G

, so that  

ykxkk ˆsinˆcos ϕϕ ρρρ +=
G

,  (5) 

The subscripts “+” and “-“ Eqs. (4.a)-(4.b) refer to the 
electron spin states, which are often called “up” and 
“down”, respectively.  

The electron wave function and total energy in Eq. 
(2) can be written, respectively, as  

)()()( ρζφχ zr ±±± =Ψ
G

,  (6) 

±± += zgr EEE  (7) 

By employing the variable separation technique, it is 
obtained two differential equations expressed in Eqs. (8.a) 
and (8.b) 
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Solutions of the differential equation in Eq. (8.a) are 
easily obtained as given in Eqs. (10.a) and (10.b). 
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where the position in the xy plane is yyxx ˆˆ +=ρ
G

. 
Equation (8.b) gives solutions as written in Eqs. (11.a) 
and (11.b). 
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and the subscript 1 and 2 represent the region 1 and 2, 
respectively. 

Since the boundary conditions of our problem 
requires that ±φ  and )/(1 dzdm ±

− φ   are continuous at the 
interfaces16), the transmission coefficient can be derived 
to be 
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It can be seen that the transmission coefficient in 
Eq. (14), which is obtained by taking into account the spin 
is similar to that without the spin as derived by 
Khairurrijal et. al. in Ref 14. The differences are only in 
the wave number zk  and the effective mass *m . 
Therefore, the transmittance ±T  for each state is easily 
calculated by using Eq. (15). 

±±± = ttT *  , (15) 

where *
±t  refers to the complex conjugate of ±t . 

For the incident electron that makes an arbitrary 
angle to the interface with total energy E, the wave 
number can be calculated by using  

2

*2
=

Emk =  , (16.a) 

θρ sinkk =  , (16.b) 

θcoskkz = . (16.c) 

Energy in the normal direction zE  can be obtained from 
Eq. (16.c), and then the transmittance is calculated by 
using Eq. (15). 

It is suitable to introduce the polarization of spin P 
which is defined as 

%100×
+
−

=
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TTP . (15) 

It means that if the transmittance of  the “+” state is 
dominant as compared to that of the “-” state then P 
becomes positive. When the transmittance of the “-” state 
become influentially then P is negative. 

3. Calculated Results and Discussion 

We used Metal-GaSb-Metal heterostructures in our 
calculation. The barrier height V0 of GaSb is 0.2 eV13). 
The Dresselhaus constant (γ) of metal and GaSb zinc-
blende semiconductor are 0 and 187 eV Å-3, 
respectively12,13). Since γ in the region I is the same as that 
in the region III, the wave vectors are also the same.  
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Figure 2. Transmittance for incident wave number ρk  = 
109m-1 and  barrier width L = 5 nm 

 
Figure 2 and 3 depict the electron transmittance T 

for “up” (+) and “down”(-) spin states as a function of the 
electron energy in the normal direction zE  with the wave 
number ρk  of 109/m and the barrier width L of 5 and 10 
nm, respectively. It is shown that the transmittance T 
increases with energy in the normal direction Ez for Ez 
lower than the barrier height V0 of 0.2 eV.  Further 
increase of Ez results in oscillation of T. The oscillatory 
behavior of T is the same as that for electron tunneling 
without spin consideration17). However, the inclusion of 
spin splits the resonant energy Er, in which T(Er)  is equal 
to 1. For the barrier width L of 5 nm, the first resonant 
energies overlap near 0.21 eV and the second ones are 
0.49 and 0.64 eV for the “down” and “up” spin states, 
respectively, as shown in Fig. 2. For L of 10 nm as given 
in Fig. 3, we find that the first resonant energies are 
identical to those for L of 5 nm, the second resonant 
energies are 0.28 and 0.31 eV for “down” and “up” spin 
states, respectively, and the third ones are the same as the 
second resonant energies for L of 5 nm. 
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Figure 3. Transmittance for incident wave number ρk  = 
109m-1 and barrier width L = 10 nm 
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Figure 4. Polarization for incident wave number kρ  
109m-1, and barrier width L = 5 and 10 nm. 
 

Figure 4 plots the polarization P with conditions 
that are the same as those for  Figs. 2 and 3. It is found 
that the polarization has positive values and it decreases 
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with the electron energy in the normal direction Ez for Ez 
lower than barrier height V0. It means that the “up” state is 
more dominant than the “down” state. For Ez higher than 
V0, the polarization oscillates between the positive and 
negative values. When P is positive, the “up” state is 
dominant as compared to the “down” state. As the 
“down” state becomes dominantly, P becomes negatives. 
It is interesting to note from Figs. 2 and 4 that the zero 
polarizations, which occur when +T  is equal to  −T , 
appear at Ez of 0.21 eV (T = 1) and 0.56 eV (T = 0.75) for 
L of 5 nm. For L of 10 nm, the zero polarizations also 
appear at Ez of 0.29 eV (T = 0.88), 0.38 eV (T = 0.36), 
and 0.74 eV (T = 0.35) in addition to those observed for L 
of 5 nm. 
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Figure 5. Transmittance as a function of incident angle 
with incident total energy E of 0.1 eV and barrier width L 
of 5 and 10 nm. 
 

Figures 5 and 6 show the electron transmittance for 
incident angle θ varying from -90o to 90o, with the barrier 
width L of 5 and 10 nm and incident total energy  E of 
0.1, and 0.2 eV, respectively. It is seen that the 
transmittance coefficient for each state does not overlap 
and is not symmetric because of the bulk inversion 
asymmetry10-11) of the zinc-blende structure. The highest 
transmittance for the incident total energy E of 0.1 eV is 
not in the normal direction, but it occurs at about ±2o. The 
transmittance decreases as the incident angle increases. 
For the incident angle larger than ±45o the transmittance 
is very low. For E of 0.2 eV we find that the highest 
transmittance is at the incident angle of 0o. The 
transmittance becomes infinitely low for the incident 
angle larger than ±30o. Furthermore, the increase in the 
incident total energy E from 0.1 to 0.2 eV results in 
significant increase in the highest transmittance. It is seen 
that the transmittance of the “down” state electron is 
greater than that of the “up” state electron for negative 
incident angles while for positive incident angles vice 
versa. At the normal incidence (θ= 0o) the transmittances 
for both states are equal because their parallel wave 
vectors become zero and thus their effective masses 
expressed in Eq. (13.a) or (13.b) are the same. Although 
the transmittance is asymmetric, it was found the relation 
T+(θ)= T-(-θ). This result is similar to that obtained by 
Kim and Lee due to the anisotropic properties of 
heterostructure materials.18) We also suggest to explore 

the result using the group theory, which is beyond the 
scope of the present discussion. 
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Figure 6. Transmittance as a function of incident angle 
with incident total energy E of 0.2 eV and barrier width L 
5 and 10 nm. 
 

Figure 7 illustrate the polarization P of spin of 
electron tunneling with variation of incident angle θ for 
the incident energy E of 0.1 and 0.2 eV and the barrier 
width L of 5 and 10 nm. It is shown that the polarization 
increases with increasing the incident angle. For the 
incident angle near the parallel direction ( ±90o), the 
polarization is much higher than that for the incident 
angle near the normal direction (0o). Therefore, the 
polarization is easier to occur if the incident angle nears 
the parallel direction. Although the polarization is high at 
θ near ±90o, the transmittance is almost zero as shown in 
Figs. 5 and 6. 
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Figure 7. Electron spin polarization as a function of 
incident angle with incident energies of 0.1 and 0.2 eV. 

4. Conclusion 

We have derived an analytical expression of the 
transmittance of electron with spin tunneling through a 
nonmagnetic semiconductor square barrier by adding the 
Dresselhauss term to the commonly used Hamiltonian to 
consider the spin effect in a semiconductor 
heterostructure. Solutions of the Schrödinger equation 
give two states, which are referred as the “up” and 
“down” spin states. The transmittance was calculated for 
the heterostructure with the barrier made from the zinc-
blende structure material. It was shown that either the 
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“up” or the “down” state transmittance is asymmetric to 
the axis at the normal incidence (θ= 0o). Although both 
transmittances are the same at the normal incidence 
because the parallel wave vectors are zero, the highest 
transmittances are not at this incident angle. In addition, it 
was found the relation T+(θ)= T-(-θ) due to the anisotropic 
properties of heterostructure materials. 
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