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Abstract 

Some geometrical aspects  of  M-theory compactified on seven dimensional G2  manifold with background fluxes are 
considered. It turns out that this model admits N=1 supersymmetry. We also discuss the arising holomorphic 
superpotential and the scalar potential with its possible vacua. 
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1. Introduction 

An eleven-dimensional M-theory1) has became a 
prominent theory during the last ten years for  both 
theorist and phenomenologist (see for example2,3)).  This 
theory  is believed to be the fundamental picture of  the 
known string theories in ten dimensions, i.e. )32(SO  
Heterotic, E8×E8 Heterotic, Type IIA, Type IIB and Type 
I, which might also be a candidate for unification theory 
in four dimensional physics. 

The main interest until now is how to construct   
M-theory vacua which have four macroscopic spacetime 
dimensions and  a realistic particle spectrum. Since  M-
theory itself is intrinsically supersymmetric, it might be 
more natural to consider its supersymmetric vacua in four 
dimensions.  Since extended 2≥N  supersymmetry in 
four dimensions cannot accommodate chirality of the 
standard model, we should study M-theory vacua with 
N=1 supersymmetry.  Thus to find our demanding vacua, 
M-theory must be compactified on a seven dimensional 
manifold 7X  whose its holonomy is  G2 4).  

If 7X is large compared to the Planck scale and 
smooth, then at low energy this M-theory is described by 
eleven dimensional supergravity. Compactifications of 
this eleven dimensional supergravity have been 
considered for several decades (see for a review4)). In the 
last few years there has been a tremendeous progress in 
studying M-theory on singular  G2 manifold to obtain 
chiral fermions which is the basic requisites of the 
standard model5,6). 

In this paper we study the low energy limit of M-
theory which is provided by eleven dimensional 
supergravity on general G2 manifold in the presence of 
fluxes. We apply our study to cosmological model of 
early universe based on local supersymmetry breaking. 
This paper is organized as follow. The next section is 
devoted to introduce M-theory and its relation with string 
theories.  G2 manifold with background fluxes is 

discussed in section 3. Supersymmetry breaking and its 
application to the early universe is studied in section 4. 
We summarize our result and discuss our future work  in 
section 5.   

2. Evidence of  M-Theory ? 

As we have mentioned in the previous section, M-
theory is an eleven-dimensional theory which is 
conjectured to be the fundamental theory describing the 
five consistent string theories. Here we only discuss this 
story using two situations, i.e. the type IIA and the E8×E8  
heterotic cases and leave some facts below ten dimensions 
for the interested readers in the reference1). It is well 
known that the low energy effective action of the type IIA 
string is provided by the type IIA supergravity in ten 
dimensions which can be constructed as S1  
compactification of the eleven dimensional supergravity. 
This implies a relation between the radius R11 of the 
eleventh dimension and the string coupling constant 

φegs = , where φ  is the dilaton field  

2
3

11 2 sgLR
π

=  ,  (1) 

where L is the length of the eleventh dimension. 
Furthermore, the Kaluza-Klein (KK) spectrum of this 
theory obeys 

Lg
n

M
s  
 2KK π

= , (2) 

where n is an arbitrary integer. These KK-states do not 
belong to the perturbative type IIA spectrum because they 
become heavy in the weak coupling limit 0→sg . 
However, in the strong coupling limit ∞→sg  they 
become light and can no longer be neglected in the 
effective theory. This infinite number of light states 
(which is called D-particles of type IIA theory) indicates 
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that the theory effectively decompactifies. 
Supersymmetry is unbroken in this limit and thus the KK-
states assemble in supermultiplets of the eleven-
dimensional supergravity. Since there is no string theory 
which has eleven-dimensional supergravity as the low 
energy limit, the strong coupling limit of type IIA string 
has to be a new theory, called M-theory.   

Another surprising result occurs in the strong 
coupling limit of  the heterotic 88 EE ×  theory. This 
theory can be constructed by compactifying M-theory on 
a Z2 orbifold of  S1 1). Just as in the type IIA case one has 

π223
H11 LgR =  and thus weak coupling corresponds to 

small 11R  and the two ten-dimensional hyperplanes sit 
close to each other; in the strong coupling limit the two 

ten-dimensional hyperplanes move far apart (to infinity). 
Thus the heterotic 88 EE ×  string theory can be viewed as 
M-theory compactified on S1/Z2.  

The above examples can be used to establish the 
statement that there is only one underlying theory, i.e. M-
theory whose moduli space (or the manifold of ground 
states) embraces all string theories1), which is 
schematically shown in Figure 1. At certain corners of the 
moduli space it looks effectively ten-dimensional and can 
be described by a weakly coupled string theory. Its low 
energy limit is given by eleven-dimensional supergravity 
but its precise non-perturbative formulation still has to be 
found. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   
 
 
 
 

Figure 1. M-theory picture of string theory 
 

3. Low Energy Effective M Theory 

In this section we will shortly discuss the eleven-
dimensional supergravity theory as the low energy limit 
of M-theory which was first constructed in the reference7). 
The emerging of G2-holonomy manifolds in 
compactification of M-theory will then be described. 
Finally, we will  discuss its compactification on G2-
holonomy manifolds with background fluxes. 

Supergravity in eleven dimensions consists of  an 
“elfbein” field A

ME , a gravitino field MΨ , and a three-
form field MNPC , where 10,...,0=A  are the flat indices 
while 10,...,0,, =PNM  are the curved indices. The 
Lagrangian has the form in the following7): 
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where the triple dots denote terms of order 4Ψ  and 
higher, A

MEE  det=  and AB
M
   Ω  denotes the spin 

connection. An antisymmetric quantity 
][ 24 NPQMMNPQ CG ∂=  are called fluxes (or G-fluxes). 

The supersymmetry variations of  fields are defined as 

M
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Here the covariant derivative is defined by 
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is the supercovariant field strength 
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Note  the presence of  the Chern-Simons-like terms in the 
Lagrangian, i.e. the fourth term in (3), that leads the 
action is only invariant up to surface terms. We want to 
mention that the quartic-Ψ terms can be included into the 
Lagrangian (3) by replacing the spin-connection field Ω 
by ( ) 2/Ω̂+Ω  in the covariant derivative of  the gravitino 
kinetic term and by replacing MNPQG  in the last line by 

2/)ˆ( MNPQMNPQ GG + . These subtitutions ensure that the 
field equations corresponding to (3) are supercovariant. 

4. 11D Supergravity on G2 Manifold with Fluxes 

Next we discuss about compactification and how 
to obtain  N=1 configuration of M-theory vacua which 
preserves fully Lorentz invariant in four dimensions. The 
basic assumption of compactification is to consider that 
some of the eleven dimensions are actually small and 
compact and only four are extended and can be observed. 
Consequently one then chooses the eleven dimensional 
space to be a direct product of a four dimensional (we 
choose here the flat Minkowski space)  and an internal 
unknown manifold  7X  

73,110,1 RM X×=  
This is equivalent to choosing a background metric which 
is a direct product between the four dimensional 
Minkowski metric and the metric on the internal manifold 

7X . In order to have N=1 vacua in four dimensions one 
has to set vanishing the vacuum expectation value of  the 
supersmmetry variation of MΨ  for 0=MNPQG  
(restricted) in the seven dimensional compact manifold 

7X  : 
( ) 0εδ =Ω=Ψ II D  (9) 

where I = 4, …,10 are the internal indices of 7X . The 
above condition implies that the holonomy of 7X  has to 
be the maximal proper subgroup of SO(7) which is  G2 
(for a review, see for example5)). Moreover, this G2 
manifold is a Ricci flat manifold obeying the equation of 
motion of the eleven-dimensional supergravity when the 
four-form field strength G and the gravitino is zero: these 
equations are simply the vacuum Einstein equations. 

When the fluxes are present, i.e. G ≠ 0  the seven 
dimensional 7X is no longer a Ricci flat manifold and 
further implies that the vacua of M-theory in four 
dimensions are not supersymmetric. In other words the 
compactification in the presence of fluxes is a description 
of spontaneous supersymmetry breaking. Let us look 
closely this phenomenon. In compactification of eleven-
dimensional supergravity, massless scalar in four 
dimensions can originate from either the metric or the C-
field via5) 

( ) ( ) ...ω 
i

  +=∑ yxC IJK
ii

IJK φ  (10) 

where )(ω yIJK
i  form a basis of  the harmonic three 

forms )(ω yi  on 7X , )(,...,1 7
3 Xbi =   with )( 7

3 Xb  is 

the third Betti number of 7X , and the dots refer to further 
terms related to the gauge field )(xAµ  and a harmonic 

two forms. Each scalar )(xiφ  in (10) appears as the real 

component of the complex scalar iz  in a chiral multiplet. 
On the other hand, the corresponding imaginary 
components of the iz  describe massless fluctuations in 
the background metric on 7X 8). This can be seen as 
follows. For any metric of G2 holonomy on 7X , there is 
a unique covariantly constant (hence closed and co-
closed) three form IJKΦ . This three form IJKΦ  belongs 

to  the cohomology class [Φ] in ( )R;73 XH , and this 

assignment is invariant under diffeomorphisms of 7X . 
As it was shown in9), the moduli space of  G2 holonomy 
metrics on 7X , modulo diffeomorphisms isotopic to the 
identity, is a smooth manifold of dimension. Furthermore, 
near a point in the moduli space corresponding to the 
equivalence class of metrics associated to IJKΦ , the 
moduli space is locally diffeomorphic to an open ball 
about [Φ] in ( )R;73 XH . These show that massless mode 

of the metric on 7X  can be parameterized as 
i

IJK
i

i
IJK s  ω∑=Φ  (11) 

The is are presumed to fluctuate around some point away 
from the origin. Thus the is  in (11) naturally combine 
with the ic  as iii scz  i+= . 

For compactification in the presence of fluxes, one 
can introduce the superpotential W(z) which was proposed 
in8,10): 
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where ( )7g  is determinant of the metric IJg  on 7X  and 
( )7

111

X
KJLIG  are internal fluxes on 7X . Under a field 

variation 
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IJKIJKIJK CCC δ+→  IJKIJKIJK Φ+Φ→Φ δ  (13) 

the superpotential varies as  
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whereas dΦ = 0 and dC = G. We see that δW is linear in 
Φ+ iδδC  and thus the superpotential W is holomorphic. 

Furthermore, the scalar potential V can be written in terms 
of the superpotential W as11) 
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where 2
Piii MWKWWD +∂= , PM  is the Planck scale, 

and K is the Kaehler potential which is given by8) 
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The necessary condition for broken 
supersymmetry in Minkowskian ground states is given 
by11,12) 

WWWDWDg ji
ji  3 =  (17) 

and further, a gravitino becomes massive after eating a 
massless spin- 2

1  fermion. The mass of gravitino 

Wem PMK 2
=Ψ  determines the scale of supersymmetry 

breaking.   

WDWDgFF ji
jii

i   =  (18) 

which induces the soft breaking terms parameterized by m 
and A. In the early universe it has been generally assumed 
that the soft parameters are of order Ψm  (assuming 
hidden sector supersymmetry breaking). The terms in (18) 
is also assumed to be dominated in the inflationary epoch, 
i.e. as the source of the inflaton field14). Furthermore, the 
presence of Yukawa couplings in the theory ensures the 
existence of four field interaction terms, and therefore 
gives an effective mass for z of  

( ) φφρ +=   δ 2
PML  (19) 

where φ is a scalar field which spans the moduli space of 
our theory and corresponds to the flat direction of the 
scalar potential. 
In order to get such a result, one has to set Pi MHWD  ∝  

and 2
PHMW ∝ . This implies  

5. Summary and Outlook 

In this paper we have studied the low energy limit 
of M-theory  which can be viewed as an eleven 
dimensional supergravity. Two situations have been 
discussed to argue the existence of the M-theory by using 
the type IIA supergravity on S1 and the heterotic 88 EE ×   
supergravity on S1/Z2. Furthermore, we have considered  

the four dimensional physics of eleven dimensional 
supergravity on  G2 manifold without and with fluxes. As 
it was shown, the latter is the realization of spontaneous 

01 =→= NN  supersymmetry breaking.  We then 
applied this study to describe the inflationary epoch of our 
universe at a very early time. 

Some problems remain. First, it is still unknown 
how M-theory can also be viewed as the strong coupling 
limit of type IIB, SO(32) heterotic, and type I string 
theories. It could be that there is a general 
compactification to solve this problem. On the other hand, 
there might be a non-trivial relation between the scale of 
supersymmetry breaking and the cosmological constant. 
This relation should explain the smallness of the 
cosmological constant of our present universe. 
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