The The Analyse of Barton Pendulum for Application of Resonance Experiment for Senior High School Student
Main Article Content
Abstract
While pendulums have been around for thousands of years and have even been successfully incorporated into high school curricula, they are still minimally used in Physics experiments on resonance materials. In this study, we designed the Barton Pendulum as a simple laboratory kit operated by teachers and easily observed by students. The pendulum system consists of a series of objects and a small ball connected and suspended with a carbolic string. The small ball here is none other than the trigger that makes all objects oscillate. As an observation material, the length of the string for each object is made different (40 cm, 29.8 cm, 20 cm, 9.5 cm, 6.7 cm). The period of each object in the system is observed using a stopwatch so that the oscillation frequency of each object is known. The object that resonates with the ball is the object that has the same length as the length of the hanging string of the ball, which means that this object has the same natural frequency as the frequency of the ball. The phase difference between the object and the trigger is also observed. The phase difference is equal to rad for objects with a string length equal to the length of the trigger string, and the phase difference is equal to π rad for objects with a string length longer than the length of the trigger.
Downloads
Article Details
References
[2] Joe, W., Route Change on The American Freeway System, Journ. of Tras. Geo., 67, pp. 12-23, 2018.
[3] Ping, T., Dinghui, Y., Dongzhuo, L., dan Qinya, L., Time-evolving seismic tomography: The method andits application to the 1989 Loma Prieta and 2014 South Napa earthquake area, California, Geophys. Res. Lett., 44, pp. 3165-3175, 2017.
[4] Nims, D., K., Miranda, E., Aiken, I., D., Whittaker, A., S., and Bertero, V., V., Collapse of The Cypress Street Viaduct as A Result of The Loma Prieta Earthquake, 1989.
[5] Hough S. E., Friberg, P. A., Busby, R., Field E. F., Jacob K. H., dan Borcherdt, R. D., Sediment-Induced Amplification and The Collapse os The Nimitz Freeway, Nature, 344, pp. 853-855. 1990.
[6] Mukhtorhon, I., Ananlysis of Auto Parametric Oscillations at the Subharmonic Frequency in Two-Phase Ferro Resonance Circuits, Proc. of The 11th Intern. Confer. On Appl. Innov. In IT, pp. 285-290, 2023.
[7] Jishnu, K. K., Xiong, L., Jose, M., Chandana, J. G., and Amit, K. G., Mitigation of Resonance Vibration Effects in Marine Propulsion, IEEE Transac. on Indust. Electron., 66 (8), pp. 6159-6169, 2019.
[8]Cindy, M, Efektivitas Model POGIL (Process Oriented Guided Inquiry Learning) Berbantukan Media Praktikum Berbasis Aplikasi Smartphone terhadap Kemampuan Berpikir Kritis Siswa SMA, Skripsi, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Lampung, 2023.
[9] Yuninasurtiana, Pengembangan Model Real-Virtual Conceptual Change Laboratory (R-V CCLab) beserta Perangkatnya untuk Meremediasi Miskonsepsi Peserta Didik SMA terkait Konsep-konsep Fisika, Disertasi, Program Studi Pendidikan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, 2021.
[10] Oriza, N., Alat Praktikum Resonansi Gelombang Bunyi Berbasis Arduino untuk Meningkatkan Keterampilan Proses Sains /Siswa di SMA, Tesis, Universitas Negeri Jakarta, Jakarta, 2020.
[11] Nursulistiyo, E., Design and Development of Multipurpose Kundt’s Tube as Physics Leraning Media, International Conference on Mathematics, Science and Education, 2017.
[12] Fatakh, L., P., dan Imam, S., Pengembangan Media Hukum Melde Berbasis Aplikasi Physics Toolbox Sensor Suite pada Materi Gelombang Stasioner, Jur. Inov. Pend. Fis., 7(2), pp. 165-170, 2018.
[13] Michael, M. and Nicholas, A. B., A swing of Beauty: Pendulums, Fluids, Forces, and Computers. Fluids, 5, pp1-35, 2020.
[14] Mario E. H., Manuel A., Marco C., and Esther L., Cosimulation and Control of Single-Wheel Pendulum Mobile Robot, Jour. of Mechan. and Robot., 13, pp. 1-9, 2021.
[15] Yuli, Y., Neng, N. M., dan Dandan, L. S., Pengaruh Panjang Tali, Massa, dan Diameter terhadap Periode dengan Variasi Sudut Simpangan, Jurn. STRING, 5 (1), pp. 6-10, 2020.
[16] Jin, W., Qilong, X., Lixin, L., Baolin, L., Leilei, H., and Yang, C., Dynamic Analysis of Simple Pendulum Model under Variable Damping. Alexandr. Engin. Jour., 61(12), pp. 10563-10575, 2022.
[17]Abhishek, N., Power Generation using Lock-in Vortex Shedding Frequencies from Quasi-constant Airflow, Thesis, Departement of Mechanical Automotive and Materials Engineering, University of Windsor, 2015.
[18] Gopal, R., Chilaka, V. K., Sangay, T., and Parsu, R. S., Development of Experimental Equipment to Study Mechanical Resonance, Annual College Research Grant Report, pp. 1-19, 2020.
[19] Barton’s Pendulum, https://sciencedemonstrations.fas.harvard.edu/presentations/bartons-pendulum (accessed at July 23th 2024)
[20] Halliday dan Resnick, Fundamental of Physics, 10th ed, Wiley, 2014.
[21] Ganijanti, A. S., Seri Fisika Dasar Mekanika, Salemba Teknika, pp 185, 2002.
[22] Jerome, D., and Muneo, K., The Concept of Resonanc[e: From Physics to Cognitive Psychology. Cognitive 2020: The Twelfth International Conference on Advanced Cognitive Technologies and Applications. pp. 62-67, 2020.
[23] Alan G., Betty M., R., dan Robert C. R., Physics, McGraw-Hill, 2010.pp 263-264.
[24] F-J’s Physics-Barton’s Pendulum and Resonance-Video 35, https://www.youtube.com/watch?v=W4YaemEauGo (accessed at July 23th 2024)
[25] Timon, I., Mechanics and Relativity, pp. 89, 2018.
[26] Defrianto, P., Modelling Large-Angle Pendulum Oscillations with Quadratic Damping and Damping on The String, Jurn. Pend. Fis., 10 (2), pp. 101-106, 2022.
[27] Quiroga, G. D. dan Ospina-Henao, P., A., Dynamics of Damped Oscillations: Physical Pendulum, Eur. J. Phys., 38(6), 2017.
[28] Mohazzabi, P. dan Shankar, S. P., Damping as A Simple Pendulum Due to Drag on Its String. Jour. Of Appl. Math. And Phys., 5(1), 2017.
[29] Mohazzabi, P. dan Fields, J.C., High-Altitude Projectile Motion. Canadian Journal of Physics, 82, pp. 197-204, 2004.
[30] Dioguardi, F., Mele, D., dan Dellino, P., A New One-Equation Model of Fluid Drag for Irregularly Shaped Particles Valid over A Wide Range of Reynoalds Number, Journ. Of Geophys. Res., 123 (1), pp. 144-156, 2017.