Review on monitoring natural and environmental radiation and its potential from mining products
Main Article Content
Abstract
Monitoring of natural radiation in Indonesia has been carried out by various parties, from researchers, academics at universities to special agencies tasked with handling this matter, such as the National Nuclear Energy Agency (Batan) and the Nuclear Energy Supervisory Agency (Bapeten). Batan through the Center for Radiation Safety and Metrology Technology (PTKMR) is in charge of monitoring natural radiation at the national level. The purpose of this paper is to review the monitoring of natural and environmental radiation in Indonesia and the potential of mining products as a source of natural radiation. The mining products that will be reviewed in this paper are natural uranium and thorium which are usually found in several mines, such as tin mines and others.
Downloads
Article Details
References
[2] Cooper, J. K Randle., dan R S Sokhi. 2004. Radioactive Releases in the Environment: Impact and Assessment. New York. John Willey and Sons
[3] Supriyanto, Amir. 2005. Pengukuran radioaktivitas dan radiasi-gamma lingkungan di provinsi Lampung. Lampung. J. Sains Tek
[4] UNSCEAR. 2000. Sources and effects of ionizing radiation. New York. UNSCEAR
[5] Taftazani, Agus. Sumining dan Muzakky. 2000. Sebaran radioaktivitas radionuklida alam dan faktor akumulasinya dalam air, sedimen dan tanaman di perairan sungai dan laut surabaya. Yogyakarta. GANENDRA
[6] Sukesi, Endang. Budi Prayitno., dan Suliyanto. 2011. Pengolahan data pengukuran radioaktivitas alpha di udara instalasi nuklir. Serpong. BATAN
[7] Sutarman. Syarbaini. Kusdiana dan Setiawan, Asep. 2010. Pemantauan lingkungan untuk keselamatan radiasi publik di Indonesia. Jakarta. Seminar Nasional Keselamatan Kesehatan dan Lingkungan VI
[8] Martin, James E. 2013. Physics for Radiation Protection. Weinheim. Wiley
[9] UNSCEAR. 1988. Sources and effects of ionizing radiation. New York. UNSCEAR
[10] Henriksen, T. Maille, H.D. 2003. Radiation and health. London. Taylor & Francis
[11] IAEA. 2004. Radiation, people and the environment. Vienna. IAEA
[12] Yang, Xiaoping dkk. 2000. Worldwide Nuclear Explosions. Arlington
[13] Keith, Sam dkk. 2013. Toxicological Profile for Uranium. Atlanta. Agency for Toxic Substances and Disease Registry (US)
[14] Lide, DR. Frederikse, HPR. 2010. Handbook of chemistry and physics. Boca Raton. CRC Press
[15] Campbell, Kate M dkk. 2015. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation. Amsterdam. Elsevier
[16] IAEA. 2009. World distribution of uranium deposits (UDEPO) with uranium deposit classification (IAEA-TECDOC-1629). Vienna. IAEA
[17] IAEA. 1998. Classification of uranium reserves/resources (IAEA-TECDOC-1035). Vienna. IAEA
[18] Keith, Sam dkk. 2019. Toxicological Profile for Thorium. Atlanta. Agency for Toxic Substances and Disease Registry (US)
[19] Weast, RC. 1983. Handbook of chemistry and physics. Boca Raton. CRC Press
[20] Dewita, Erlan. 2012. Analisis potensi thorium sebagai bahan bakar nuklir alternatif PLTN. Jakarta. Jurnal Pengembangan Energi Nuklir Vol. 14 No. 1, Juni 2012
[21] IAEA. 2019. World thorium occurrences, deposits and resources (IAEA-TECDOC-1877). Vienna. IAEA
[22] Falciglia, Pietro P dkk. 2017. Stabilisation/Solidification of soils contaminated by mining activities. Amsterdam. Elsevier
[23] Bastori, Imam. Birmano, Moch Joko. 2017. Analisis ketersediaan uranium di Indonesia untuk kebutuhan PLTN tipe PWR 1000 MWe. Jakarta. Jurnal Pengembangan Energi Nuklir Vol. 19, No. 2, (2017) 95-102
[24] Sumaryanto, Agus. 2012. Uranium and thorium exploration activities and their processing research in Indonesia. Jakarta. Batan
[25] IAEA. 2005. Environmental and source monitoring for purposes of radiation protection (Safety Guide No. RS-G-1.8). Vienna. IAEA
[26] IAEA. 1995. The principles of radioactive waste management (safety series no. 111-F). Vienna. IAEA