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Abstract 

Several types of upward motion of a ball in a cylinder filled with water are observed in experiment such as straight, 
damped zigzag, and zigzag upward motion. Center of mass of the balls and the way the balls are released play 
important role to determine the type of occuring upward motion. A simple theoretical model regarding only 
gravitational force, Stokes drag force, and Archimedes bouyancy force, where the work points of these forces are 
not coincident, are developed and used to explain the damped zigzag motion. 
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1. Introduction 

The falling ball viscometer is one of the most 
well known simple apparatus to measure fluid 
viscosity1). Simplicity of the model proposed 
theoretically by Stokes makes this model easy to be 
calculated and implemented, There is an assumption 
that the Stokes drag force can work in any direction of 
ball motion, not only in downward direction as it was 
derived for laminar flow moving againts the ball2). 
Unfortunately using only Stokes drag force can not 
explain several types of motion observed, such as 
rotating, spinning, fluctuating, and straight upward 
motion3). In this work a simple model based on Stokes 
model are proposed and calculated. The results are 
then compared with experimental results. 

2. Theoretical model 

2.1 Straight upward motion (linear motion) 

The gravitational force GF
r

 in downward 

direction, Archimedes buoyant force AF
r

 in upward 

direction, and Stokes drag force SF
r

 in opposite 
direction of the motion are the only forces considered 
in the model. Each force works only at certain point 
labeled like its name, for example GF

r
works only at 

point G. In general,  point S, A, and G are not always 
at the same position. In the special case as shown in 
Figure 1 the ball can move upward in a straight line 
because these three points sit in a straight vertical line. 
This configuration introduces no torque, so that the 
ball will move linearly. 
 

 

 
 
Figure 1. A ball with radius R moving upward under 
influence of gravitational force GF

r
, Archimedes 

bouyant force AF
r

, and Stokes drag force SF
r

. 
 
Gravitational force GF

r
 is expressed in term of ball 

density bρ , earth gravitational acceleration g, and ball 
volume V, 

kgVF bG
ˆρ−=

r
. (1) 

In the same way also for expressing Archimedes 
bouyant force AF

r
 

kgVF fA
ˆρ=

r
, (2) 

where fρ  is fluid density. According to Stokes, 
moving ball in a fluid must face resistance of the fluid 
proportional to and against direction of velocity v

r
 in 

term of Stokes drag force SF
r

 

vRFS
rr

πη6−= , (3) 

where η  is viscosity of the fluid and R is the ball 
radius. Combining Equations (1) – (3) using Newton‘s 
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second law of linear motion, an expression of ball 
acceleration a

r
 can be found 

m
vRkgV

a bf
r

r πηρρ 6ˆ)( −−
= . (4) 

The ball terminal velocity Tv
r

 can be found by setting 
0=a

r
in Equation (4), which gives 

 k
gR

v bf
T

ˆ
9

)(2 2

η
ρρ −

=
r . (5) 

2.2 Pendulum-like motion (rotational motion) 

When the three forces considered in this model 
do not work as shown in Figure 1 they will introduce a 
torque to the system. Gravitational force GF

r
 at point 

G always points downward and Archimedes bouyant 
force AF

r
 at point A always points upward.  

It is proper to the take ball‘s center of mass at 
point G as the rotation point. But since the goal is to 
obtain a zigzag type motion, it is more useful to take 
point S as center of rotation. This point is not always 
the same because it changes as face of the ball rotates. 

 
 
Figure 2. As the ball moves to direction of v

r
,   

gravitational force GF
r

 always points downward and 

Archimedes bouyancy force AF
r

always points upward, 

where Stokes drag force SF
r

 always againts the 
direction of motion. 
 
First, the emerging torque at point S in this 
configuration must be also taken into account, which 
are 

GGSS Fr
rrr

×=τ  (7) 

torque caused by gravitational force, where 
SGGS rrr
rrr

−= , position of point G measured from 
point S. Since upward motion is dominant, it is 
assumed that point S and A are always located in 
vertical line. Then, using Newton second law of 
angular motion 

I
S

S
τ

α
r

r
=  (8) 

angular acceleration Sα
r

at point S can be found, where 
I is ball‘s momen inertia. In this case moment of 
inertia of the ball is 

22

5
2 mRmRI += , (9) 

which is derived using paralel-axis theorem [4].  
 
2.3 Combination of linear and rotational motion 

Zigzag upward motion then is just as simple as 
a superposition of motion of the straight upward linear 
motion and the rotational motion. There are also initial 
conditions such as initial angular velocity, initial 
linear velocity, initial position, and initial angular 
position (or orientation), which must be considered. 
For example 

0)0(
0)0(

0)0(
0)0(

=
=

=
=

ω
θ
r

s

r

r

v
r

 (11) 

can be used as initial condition. 

 
 
Figure 3. A pendulum-like motion combined with 
upward straight motion will produce a damped zigzag 
motion as observed in experiments. 
 

It is illustrated in Figure 3 how an oscillating 
pendulum-like motion combined with upward straight 
motion can produce the desired zigzag, damped 
oscillating motion. Explanations are as follows: (a) as 
the ball moves in upward direction indicated against 
the arrow at point S, the force at G produces  torque at 
S, which then rotates the ball in counter clockwise 
direction; (b) Then point S is changed, it must be 
always in front of the ball. Previous process 
reoccurres, but this time the ball rotates in clockwise 
direction; and (c) The same type of motion as in (a) is 
repeated but with smaller amplitude. 

3. Calculation Method 

Euler methods5) are used to solve the 
differential equations concerning Equation (4) for 
linear motion and Equation (6) – (9) for rotational 
motion. Numeric equations are listed below 

kgVF f
i

A
ˆ)( ρ=

r
, (12) 

kgVF b
i

G
ˆ)( ρ−=

r
. (13) 

vRF i
S

rr
πη6)( −= , (14) 
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)cosˆsinˆ(|| )()()1()()1( iii
GS

i
A

i
GS kjrrr θθ −+= ++ rrr

, (15) 

2

)()(
)(

7
5

mR
Fr i

G
i

GSi
S

rr
r ×

=α , (16) 

ti
S

i
S

i
S ∆+=+ )()()1( αωω

rvv , (17) 

2)()()()1( )(
2
1 tt i

S
i

S
i

S
i

S ∆+∆+=+ αωθθ
rvrr

, (18) 

m
FFF

a
i

S
i

G
i

Ai
A

)()()(
)(

rrr
r ++

= , (19) 

tavv i
A

i
A

i
A ∆+=+ )()()1( rrr , (20) 

2)()()()1( )(
2
1 tatvrr i

A
i

A
i

A
i

A ∆+∆+=+ rrrr , (21) 

ttt tt ∆+=+ )()1( . (22) 
Using iteration by increasing i trajectory of ball 
motion can be solved and plotted. 

4. Results and Discussion 

4.1 Straight upward motion (linear motion) 

By using the set of numerical equations 
showed in Equation (12) – (22) with intial condition: 
R = 1.2 cm, η = 1 cPs, ρb = 0.95 g/cm3,  ρf = 1.00 
g/cm3, ∆t = 1 × 10 –5   s, rAG = 2 mm, and g = 9.81 
m/s2, value of terminal velocity vT as shown in 
Equation (5) is obtained, which is 1.5696 × 10–5  m/s. 
Velocity time series is plotted in Figure 4. This result 
ensures that the algorithms valid for simple upward 
linear motion. As shown in Figure 4 value of terminal 
velocity vT is reach in about 2 × 10–4 s as the ball is 
released from its initial position. 

Since in our experiment we can not measure 
such a small time in order of  10–5 m/s, this result is 
not yet confirmed. 

 
Figure 4. Ball vertical velocity vz time series for 
liniear upward motion, where terminal velocity 
obtained vT = 1.5696 × 10–5 m/s is exactly the same as 
predicted in Equation (5). 
 
4.2. Pendulum-like motion (rotational motion) 

Using the same parameters as previous in the 
previous result with additon parameter: θ0 = 0.157 rad 

or 9˚ we get result of angle of swinging center of mass 
or point G with rotation point at point S as shown 
previously in Figure 3.  
 

 
Figure 5. Time series of angle of center of mass to 
vertical direction θx, where periode T has value of 0.64 
s as predicted by Equation (23). 
 

According to the theory in [4] for paralel-axes 
theorem in calculating momen inertia I at point S and 
in [6] for periode of a physical pendulum in form of 

mgL
IT π2= , (23) 

where L is the same as our rGS in this case, we get 
value of T = 0.64 s as shown in Figure 5. 
 
4.3 Combination of linear and rotational motion 

Now both motion in section 4.1 and 4.2 will be 
combined to get the desired damped zigzag motion 
through a relation in form of 

SGS
i

A
i

A rvv ω
rrrr

×+=+ )()1( . (24) 

As a result it can be seen in Figure 6 a zigzag motion 
of the ball. As a comparison is series of experiment 
photos illustrated in Figure 7. 

 
Figure 6. Simulation resuls for zigzag motion with the 
parameters as desribed in text. 
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Figure 7. Example of experiment results: time is 
increasing from left to right. Periodic black rectangles 
are marks for measuring ball position every 4 cm. 
 

Ball rises up with a zigzag motion as it can be 
seen in Figure 7. It moves to the left and to right 
periodically at the same time as it moves upward. It 
oscillates in periode about 11.2 s with some length 
about 17 cm. 

5. Conclusion 

In this work we can conclude that our model 
shows that the zigzag motion is a superposition of an 
upward straight motion and a pendulum-like motion. 
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