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Abstract 

An analytical expression of electron direct transmittance and tunneling time through a nanometer-thick trapezoidal 
potential barrier have been derived by using a phase-time method with Airy wavefunction solution. The expression 
is applied to Si(100)/HfO2/Si(100) (isotropic) and Si(110)/HfO2/Si(110) (anisotropic) structures calculated under 
the consideration of barrier width, incident energy, incident angle, and bias voltage. The calculated results are 
discussed and comparisons between the isotropic and anisotropic heterostructures are discussed. 
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1. Introduction 

The tunneling phenomenon passing through a 
potential barrier has been discussed since 60 years 
ago and is still of interest to study quantum transport 
in heterostructures in present day. The concept of 
tunneling time is very important for ultimate 
performance evaluations of resonant tunneling 
diodes, traveling-wave tunnel monolithic integrated 
circuits, and infrared resonant tunneling lasers.1) 
Recently, the subject has received considerable 
attention in view of potential use of these structures 
in device fabrication.2,3)  

There have been many studies on the 
tunneling time and proposed some models to solve 
the tunneling time. One of the method in calculating 
the tunneling time is a phase time method which was 
introduced by Bohm4) and Wigner5) where is the best 
model of the tunneling time as proved by Steinberg 
and Chiao6). 

Very recently, Khairurrijal et al.7) have 
adopted the Wigner’s phase time approach to 
calculate the one-dimensional electron tunneling time 
in an isotropic heterostructure with exponential 
wavefunction solution. In this paper, we have derived 
analytical expresssions of electron direct 
transmittance and tunneling time of 
Si(100)/HfO2/Si(100) (isotropic) and 
Si(110)/HfO2/Si(110) (anisotropic) structures by 
using phase time method with airy wiavefunction 
solution. The analytical expressions were calculated 
under the consideration of barrier width, incident 
energy, incident angle, and bias voltage. The 
calculated results are discussed and compared 
between the isotropic and anisotropic 
heterostructures. 
 

 

2. Theoretical model 

Figure 1 shows the schematic energy diagram of 
a heterostructure with a trapezoidal potential barrier in 
the normal direction (z-direction) to the layer. The 
barrier width is L and the barrier height is Φ. The 
electron effective mass and potential are dependent on 
the z-direction. It is considered that the incident energy 
E is smaller than the barrier height Φ and the effective 
mass of an electron in region I is the same as that in 
region III (m1) and in region II that is m2. 
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Figure 1. Energy band profile without giving bias 
voltage (a) and giving bias voltage to the barrier (b). 
 

The Hamiltonian for the general anisotropic 
materials is expressed as follow4): 
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where m0 is the free electron mass, p is a momentum 
vector, (1/m0)α is the inverse effective mass tensor 
which expressed as  
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and )(rV is the potential energy. 

For the isotropic material, the effective invers 
mass tensor is written as 
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where αααα === zzyyxx  then 0=γ   

The effective-mass equation wave function 
with the Hamiltonian of Eq. (1) is given by 
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)(zϕ satisfies the one-dimensional Schrödinger-like 
equation in this problem 
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where the subscript m in m,zzα denotes each region in 
Fig. 1 and the electron energy in the normal direction 
can be written as 
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where αij is the inverse effective-mass tensor. 
We further consider the time-independent 

electron wave function in each region in Fig. 1 as 
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where A, C, G are transmission coefficient in each 
region, B, D, H are reflection coefficient in each 
region, and Ai and Bi are the Airy function. 

The wave number k1 and  k3 are expressed 
respectively as follow as 

1
2

1
1 2

2m E
k ⎛ ⎞= ⎜ ⎟

⎝ ⎠
,  (9) 

2
1

2
1

3
)(2
⎟
⎠

⎞
⎜
⎝

⎛ +
= beVEm

k , (10) 

where  is the reduced Planck constant and Vb is the 
voltage applied to the barrier. The argument ζ(z) of 
the Airy functions is expressed as  
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where F=eVb/L is the electric field in the barrier.    
With the boundary conditions at z= 0 and z= L, 

which are given by8 ) 
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the relation between the constants G and A can be 
written as 
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where, 
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The transmittance Tc of an electron through the 
trapezoidal barrier is expressed as 

Tc= f.f*. (14) 
The direct tunneling time τ is obtained by using 

the Wigner phase time approach.9) 
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3. Calculated results and discussion 

We use Si(100)/HfO2/Si(100) (isotropic) and 
Si(110)/HfO2/Si(110) (anisotropic) structures MOS 
(metal-oxide-semiconductor) structures to examine the 
theoretical model described in the previous section by 
applying a bias voltage Vb to the barrier. The following 
parameters are given : Φ= 1.5 eV, m2=0.15m0, where 
m0 is the free electron mass to calculate the electron 
transmittance and tunneling time. For anisotropic 
material, there are four equivalent valleys in the 
conduction band of Si (110)10). The effective mass 
tensor elements of these four valleys are not the same. 
There are two groups of valley in Si (110), each of 
them has two valleys. The invers effective mass tensors 
used in our numerical calculation are shown in table 1. 
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Table 1. Inverse effective-mass tensors (αij ) of Si 
(110) used in the numerical calculation. 
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Figure 2 shows the coordinate system used in 
our problem. The position where the incident electron 
hits the barrier is the origin of the coordinate system. 
From this system, the eq. (6) to be 
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We calculate the direct tunneling time with the 

angle of incident electron are θ and ϕ respectively. 
We fix ϕ  to π/2 and change only θ for simplicity.  

The calculated results are plotted as a function 
of barrier width, incident energy, incident angle, and 
bias voltage as the figures below.  The solid line is 
for an electron in Si(100)/HfO2/Si(100) (isotropic) 
structures, and and the dotted line is for an electron in 
Si(110)/HfO2/Si(110) (anisotropic) structures. 
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Figure 2. The coordinate system used in this paper 
 

Figure 3 and figure 4 show the plot of barrier 
width dependence of the direct transmittance and 
tunneling time respectively. Keeping the energy of 
electron and the bias voltage constant are 0.2 eV and 
0.1 V respectively. The data are plotted for two 
structures for incident angle is 0°. Both of isotropic 
and anisotropic structure, it is clearly seen that for 
L<2 nm, the direct transmittance decreases incisively 
as the HfO2 layer becomes thicker. For L is thicker 
than 2 nm, the direct transmittance  tends to constant, 
independent of the thickness of HfO2 layer. The 
transmittance of isotropic structure is higher than 
anisotripic structure. 
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Figure 3.  Direct transmittance depends on barrier 
width with incident electron energy E=0.2 eV and bias 
voltage Vb=0.1 V. 
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Figure 4.  Direct tunneling time depends on barrier 
width with incident electron energy E=0.2 eV and bias 
voltage Vb=0.1 V. 
 

It is clearly seen that for L<0.5 nm, the direct 
tunneling time τ increases incisively as the HfO2 layer 
becomes thicker in both of the isotropic and anisotropic 
structures. For L is thicker than 0.5 nm, the direct 
tunneling time decreases as the oxide thickness as 
increases. As .L>2 nm the direct tunneling time tends 
to constant, independent of the thickness of HfO2 layer. 
Generally, As the HfO2 layer becomes thicker, the 
direct tunneling time for isotropic structure is less than 
anisotropic structure. 

Figure 5 and figure 6 respectively, show the 
incident energy of electron  dependence of the direct  
transmittance and tunneling time with the bias voltages 
of 0.1 V and incident angle is 0°. Taking the barrier 
width L=1 nm, the direct transmittance becomes 
increases as the incident energy becomes increase for 
both of isotropic and anisotropic structure. It is shown 
that as incident energy increases, the probability of an 
electron through the barier in isotropic structur is 



44  IJP Vol. 18 No. 2, 2007 

higher than in anisotropic structure. Both of isotropic 
and anisotropic structure, the direct tunneling time 
becomes decrease for the incident energy becomes 
increase. For both isotropic and anisotropic structure, 
increasing of incident energy is able to accelerate 
electron passing through the barrier which the 
movement of electron in isotropic structure is faster 
than in anisotropic structure.  
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Figure 5. Energy of electron dependence of  direct  
transmittance with bias voltage Vb=0.1 V and barrier 
width L=1 nm. 
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Figure 6. Energy of electron dependence of  direct  
tunneling time with bias voltage Vb=0.1 V and barrier 
width L=1 nm. 
 

Figure 7 and figure 8 respectively show the 
direct transmittance and tunneling time as a function 
of varied the angle (in degree) of incidence with 
respect to the barrier over the range from -90° to 90° 
with the barrier width L=1 nm, incident energy of 
electron E=0.2 eV, and bias voltage Vb=0.1 V. It is 
shown that for both of isotropic and anisotropic 
structure, the direct transmittance gives the highest 
value at the incident angle of 0°.  

 

In anisotropic structure for all valleys, the direct 
transmittance is asymmetric with the change of the 
incident angle.  Both of isotropic and anisotropic 
structure, the direct tunneling time gives the lowest 
value at the incident angle of 0°. It is means that for the 
incident angle of 0°, the movement of electron 
becomes fastest.  In anisotropic structure for all valleys, 
the direct transmittance is asymmetric with the change 
of the incident angle. 
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Figure 7. Direct transmittance as function of angle with 
incident electron energy E=0.2 eV and bias voltage 
Vb=0.1 V. 
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Figure 8. Direct tunneling time as function of angle 
with incident electron energy E=0.2 eV and bias 
voltage Vb=0.1 V. 
 

Figure 9 and figure 10 respectively, show the 
bias voltage dependence of the direct  transmittance 
and tunneling time with the barrier width L=1 nm, 
incident energy of electron E=0.2 eV, and incident 
angle is 0°. For isotropic structure, the direct 
transmittance tends to increase for Vb<0.3 V. For 
Vb>0.3 V, the direct transmittance tends to decrease 
exponentially. For anisotropic structure, the direct 
transmittance  tends to be constant, independent of the 
bias voltage. It is clearly shown that the direct 
transmittance in isotropic material more higher than 
anisotropic material. It is also shown, As the bias 
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voltage becomes increase, the direct tunneling time 
for isotropic structure is less than anisotropic 
structure.  
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Figure 9. Direct transmittance as function of bias 
voltage with incident electron energy E=0.2 eV and 
barrier width L=1 nm. 
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Figure 10. Direct tunneling time as function of bias 
voltage with incident electron energy E=0.2 eV and 
barrier width L=1 nm. 

4. Conclusion 

We have derived an analytical expression of 
electron direct tunneling time through a nanometer-
thick trapezoidal barrier isotropic and anisotropic 
structure. It is found that probability of an electron in 
isotropic structure through the barrier is higher than in 
anisotropic structure. It is also found that the electron 
movement is faster in isotropic structure than in 
anisotropic structure. 
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