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Abstract

An analytical expression of electron direct transmittance and tunneling time through a nanometer-thick trapezoidal
potential barrier have been derived by using a phase-time method with Airy wavefunction solution. The expression
is applied to Si(100)/HfO/Si(100) (isotropic) and Si(110)/HfO,/Si(110) (anisotropic) structures calculated under
the consideration of barrier width, incident energy, incident angle, and bias voltage. The calculated results are
discussed and comparisons between the isotropic and anisotropic heterostructures are discussed.
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1. Introduction

The tunneling phenomenon passing through a
potential barrier has been discussed since 60 years
ago and is still of interest to study quantum transport
in heterostructures in present day. The concept of
tunneling time is very important for ultimate
performance evaluations of resonant tunneling
diodes, traveling-wave tunnel monolithic integrated
circuits, and infrared resonant tunneling lasers.”
Recently, the subject has received considerable
attention in view of potential use of these structures
in device fabrication.>?

There have been many studies on the
tunneling time and proposed some models to solve
the tunneling time. One of the method in calculating
the tunneling time is a phase time method which was
introduced by Bohm® and Wigner® where is the best
model of the tunneling time as proved by Steinberg
and Chiao®.

Very recently, Khairurrijal er al” have
adopted the Wigner’s phase time approach to
calculate the one-dimensional electron tunneling time
in an isotropic heterostructure with exponential
wavefunction solution. In this paper, we have derived
analytical ~ expresssions  of  electron  direct
transmittance and tunneling time of
Si(100)/HfO,/Si(100) (isotropic) and
Si(110)/HfO,/Si(110) (anisotropic) structures by
using phase time method with airy wiavefunction
solution. The analytical expressions were calculated
under the consideration of barrier width, incident
energy, incident angle, and bias voltage. The
calculated results are discussed and compared
between the isotropic and anisotropic
heterostructures.

2. Theoretical model

Figure 1 shows the schematic energy diagram of
a heterostructure with a trapezoidal potential barrier in
the normal direction (z-direction) to the layer. The
barrier width is L and the barrier height is &. The
electron effective mass and potential are dependent on
the z-direction. It is considered that the incident energy
E is smaller than the barrier height @ and the effective
mass of an electron in region I is the same as that in
region Il (m,) and in region Il that is m,.
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Figure 1. Energy band profile without giving bias
voltage (a) and giving bias voltage to the barrier (b).

The Hamiltonian for the general anisotropic
materials is expressed as follow®:
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My

where m, is the free electron mass, pis a momentum

vector, (I/mg)a is the inverse effective mass tensor
which expressed as
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and ¥ (r) is the potential energy.

For the isotropic material, the effective invers
mass tensor is written as

a, O 0
an=0 a, 0|,
0 0 o,
where o, =a, =a, =a then y=0

The effective-mass equation wave function
with the Hamiltonian of Eq. (1) is given by

¥(r)= p(z)exp(-isz)explith,x +k,3)),  (2)
where
,o kxaxza+ kyayz . @)

zz

¢(z) satisfies the one-dimensional Schrodinger-like
equation in this problem
s %9(2)

Zmo azz,m 7+ V(Z)¢(Z) = EZ(D(Z) ’ (4)

where the subscript m in «_. , denotes each region in

Fig. 1 and the electron energy in the normal direction
can be written as
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where ¢ is the inverse effective-mass tensor.
We further consider the time-independent
electron wave function in each region in Fig. 1 as
Aexp(ikyz)+ Bexp(~ik;z), z<0
v(z)=4C Ai(g(z))+D Bi(g(z)), O<z<L ®)
Gexplikyz)+ H exp(-ikyz), z>L

where 4, C, G are transmission coefficient in each
region, B, D, H are reflection coefficient in each
region, and 4i and Bi are the Airy function.

The wave number k; and k3 are expressed
respectively as follow as

k= (ZmlE jy ©
hZ
) V2
_(2my(E +eVy) , 10
kr( n? j 0

where 7 is the reduced Planck constant and 7 is the

voltage applied to the barrier. The argument {(z) of
the Airy functions is expressed as

omF V(o - E
g(z)=(;jz ] [ - ] (11)
where F=eV,/L is the electric field in the barrier.

With the boundary conditions at z= 0 and z= L,
which are given by®
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the relation between the constants G and A can be
written as

=g
4 (13)
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where,

fi= i ((L)) Bi(s (L)) - 4is (L) B (5(1))
fo =40 ( (L)) Bi ((0)) 4 (<(0)) Bi (<))
£, = 4i(s(0)) Bi (s (L)) - 4i (L)) Bi(5(0))
1= 4i(s (L)) Bi (5(0)) - 4i (5(0) Bi(s (L)

S5 =4i(c(0))Bi(s (L)) - 4i(s (L)) Bi(5(0))
The transmittance 7. of an electron through the
trapezoidal barrier is expressed as

T=ff>. (14)
The direct tunneling time t is obtained by using
the Wigner phase time approach.”

,ﬂ[%ﬂ]. (15)
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3. Calculated results and discussion

We use Si(100)/HfO,/Si(100) (isotropic) and
Si(110)/HfO,/Si(110) (anisotropic) structures MOS
(metal-oxide-semiconductor) structures to examine the
theoretical model described in the previous section by
applying a bias voltage ¥, to the barrier. The following
parameters are given : @= 1.5 eV, m,=0.15m,, where
my is the free electron mass to calculate the electron
transmittance and tunneling time. For anisotropic
material, there are four equivalent valleys in the
conduction band of Si (110)'?. The effective mass
tensor elements of these four valleys are not the same.
There are two groups of valley in Si (110), each of
them has two valleys. The invers effective mass tensors
used in our numerical calculation are shown in table 1.
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Table 1. Inverse effective-mass tensors (e; ) of Si
(110) used in the numerical calculation.

Valley Regions | and 111
526 0 0
1 0 314 212
0 212 314
5.26 0 0
2 0 314 -212
0 -212 314

Figure 2 shows the coordinate system used in
our problem. The position where the incident electron
hits the barrier is the origin of the coordinate system.
From this system, the eq. (6) to be

hz 2 ain? 2
E=%{amlk sin“ @cos p+a,

+a.,k® cos® 0+ 2(axy,lk2 sin® dcospsin @

+a,.,k?sin@cosfsin g+ a., k* sin O cos O cos (p)}
(18)

We calculate the direct tunneling time with the
angle of incident electron are & and ¢ respectively.
We fix ¢ to n/2 and change only @for simplicity.

The calculated results are plotted as a function
of barrier width, incident energy, incident angle, and
bias voltage as the figures below. The solid line is
for an electron in Si(100)/HfO,/Si(100) (isotropic)
structures, and and the dotted line is for an electron in
Si(110)/HfO,/Si(110) (anisotropic) structures.

X
Figure 2. The coordinate system used in this paper

Figure 3 and figure 4 show the plot of barrier
width dependence of the direct transmittance and
tunneling time respectively. Keeping the energy of
electron and the bias voltage constant are 0.2 eV and
0.1 V respectively. The data are plotted for two
structures for incident angle is 0°. Both of isotropic
and anisotropic structure, it is clearly seen that for
L<2 nm, the direct transmittance decreases incisively
as the HfO, layer becomes thicker. For L is thicker
than 2 nm, the direct transmittance tends to constant,
independent of the thickness of HfO, layer. The
transmittance of isotropic structure is higher than
anisotripic structure.
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Figure 3. Direct transmittance depends on barrier
width with incident electron energy E=0.2 eV and bias
voltage V,=0.1 V.
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Figure 4. Direct tunneling time depends on barrier
width with incident electron energy E=0.2 eV and bias
voltage V,=0.1 V.

It is clearly seen that for L<0.5 nm, the direct
tunneling time 7 increases incisively as the HfO, layer
becomes thicker in both of the isotropic and anisotropic
structures. For L is thicker than 0.5 nm, the direct
tunneling time decreases as the oxide thickness as
increases. As .L>2 nm the direct tunneling time tends
to constant, independent of the thickness of HfO, layer.
Generally, As the HfO, layer becomes thicker, the
direct tunneling time for isotropic structure is less than
anisotropic structure.

Figure 5 and figure 6 respectively, show the
incident energy of electron dependence of the direct
transmittance and tunneling time with the bias voltages
of 0.1 V and incident angle is 0°. Taking the barrier
width L=1 nm, the direct transmittance becomes
increases as the incident energy becomes increase for
both of isotropic and anisotropic structure. It is shown
that as incident energy increases, the probability of an
electron through the barier in isotropic structur is
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higher than in anisotropic structure. Both of isotropic
and anisotropic structure, the direct tunneling time
becomes decrease for the incident energy becomes
increase. For both isotropic and anisotropic structure,
increasing of incident energy is able to accelerate
electron passing through the barrier which the
movement of electron in isotropic structure is faster
than in anisotropic structure.
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Figure 5. Energy of electron dependence of direct
transmittance with bias voltage V,=0.1 V and barrier
width L=1 nm.
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Figure 6. Energy of electron dependence of direct
tunneling time with bias voltage V,=0.1 V and barrier
width L=1 nm.

Figure 7 and figure 8 respectively show the
direct transmittance and tunneling time as a function
of varied the angle (in degree) of incidence with
respect to the barrier over the range from -90° to 90°
with the barrier width Z=1 nm, incident energy of
electron £=0.2 eV, and bias voltage V,=0.1 V. It is
shown that for both of isotropic and anisotropic
structure, the direct transmittance gives the highest
value at the incident angle of 0°.

In anisotropic structure for all valleys, the direct
transmittance is asymmetric with the change of the
incident angle. Both of isotropic and anisotropic
structure, the direct tunneling time gives the lowest
value at the incident angle of 0°. It is means that for the
incident angle of 0° the movement of electron
becomes fastest. In anisotropic structure for all valleys,
the direct transmittance is asymmetric with the change
of the incident angle.
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Figure 7. Direct transmittance as function of angle with
incident electron energy E=0.2 eV and bias voltage
V,=0.1 V.
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Figure 8. Direct tunneling time as function of angle
with incident electron energy E=0.2 eV and bias
voltage V,=0.1 V.

Figure 9 and figure 10 respectively, show the
bias voltage dependence of the direct transmittance
and tunneling time with the barrier width L=1 nm,
incident energy of electron £=0.2 eV, and incident
angle is 0° For isotropic structure, the direct
transmittance tends to increase for Vb<0.3 V. For
Vb>0.3 V, the direct transmittance tends to decrease
exponentially. For anisotropic structure, the direct
transmittance tends to be constant, independent of the
bias voltage. It is clearly shown that the direct
transmittance in isotropic material more higher than
anisotropic material. It is also shown, As the bias
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voltage becomes increase, the direct tunneling time
for isotropic structure is less than anisotropic
structure.
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Figure 9. Direct transmittance as function of bias
voltage with incident electron energy E=0.2 eV and
barrier width L=1 nm.
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Figure 10. Direct tunneling time as function of bias
voltage with incident electron energy E=0.2 eV and
barrier width L=1 nm.

4, Conclusion

We have derived an analytical expression of
electron direct tunneling time through a nanometer-
thick trapezoidal barrier isotropic and anisotropic
structure. It is found that probability of an electron in
isotropic structure through the barrier is higher than in
anisotropic structure. It is also found that the electron
movement is faster in isotropic structure than in
anisotropic structure.
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